知识图谱——技术与行业应用

helloworld_38131402
• 阅读 671

现在的聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,无一不跟知识图谱相关。

随着移动互联网的发展,万物互联成为了可能,这种互联所产生的数据也在爆发式地增长,而且这些数据恰好可以作为分析关系的有效原料。如果说以往的智能分析专注在每一个个体上,在移动互联网时代则除了个体,这种个体之间的关系也必然成为我们需要深入分析的很重要一部分。 在一项任务中,只要有关系分析的需求,知识图谱就“有可能”派的上用场。

知识图谱的表示

知识图谱应用的前提是已经构建好了知识图谱,也可以把它认为是一个知识库。这也是为什么它可以用来回答一些sousuo相关问题的原因,比如在Googlesousuo引擎里输入“Who is the wife of Bill Gates?”,我们直接可以得到答案-“Melinda Gates”。这是因为我们在系统层面上已经创建好了一个包含“Bill Gates”和“Melinda Gates”的实体以及他俩之间关系的知识库。所以,当我们执行sousuo的时候,就可以通过重点词提取("Bill Gates", "Melinda Gates", "wife")以及知识库上的匹配可以直接获得最终的答案。这种sousuo方式跟传统的sousuo引擎是不一样的,一个传统的sousuo引擎它返回的是网页、而不是最终的答案,所以就多了一层用户自己筛选并过滤信息的过程。

知识图谱——技术与行业应用

在现实世界中,实体和关系也会拥有各自的属性,比如人可以有“姓名”和“年龄”。当一个知识图谱拥有属性时,我们可以用属性图(Property Graph)来表示。下面的图表示一个简单的属性图。李明和李飞是父子关系,并且李明拥有一个138开头的电话号,这个电话号开通时间是2018年,其中2018年就可以作为关系的属性。类似的,李明本人也带有一些属性值比如年龄为25岁、职位是总经理等。

知识图谱——技术与行业应用

这种属性图的表达很贴近现实生活中的场景,也可以很好地描述业务中所包含的逻辑。除了属性图,知识图谱也可以用RDF来表示,它是由很多的三元组(Triples)来组成。RDF在设计上的主要特点是易于发布和分享数据,但不支持实体或关系拥有属性,如果非要加上属性,则在设计上需要做一些修改。目前来看,RDF主要还是用于学术的场景,在工业界我们更多的还是采用图数据库(比如用来存储属性图)的方式。感兴趣的读者可以参考RDF的相关文献,在文本里不多做解释。

知识抽取

知识图谱的构建是后续应用的基础,而且构建的前提是需要把数据从不同的数据源中抽取出来。对于垂直领域的知识图谱来说,它们的数据源主要来自两种渠道:一种是业务本身的数据,这部分数据通常包含在公司内的数据库表并以结构化的方式存储;另一种是网络上公开、抓取的数据,这些数据通常是以网页的形式存在所以是非结构化的数据。

前者一般只需要简单预处理即可以作为后续AI系统的输入,但后者一般需要借助于自然语言处理等技术来提取出结构化信息。比如在上面的sousuo例子里,Bill Gates和Malinda Gate的关系就可以从非结构化数据中提炼出来

知识图谱——技术与行业应用

信息抽取的难点在于处理非结构化数据。在下面的图中,我们给出了一个实例。左边是一段非结构化的英文文本,右边是从这些文本中抽取出来的实体和关系。在构建类似的图谱过程当中,主要涉及以下几个方面的自然语言处理技术:

a. 实体命名识别(Name Entity Recognition) b. 关系抽取(Relation Extraction) c. 实体统一(Entity Resolution) d. 指代消解(Coreference Resolution)

知识图谱的存储

知识图谱主要有两种存储方式:一种是基于RDF的存储;另一种是基于图数据库的存储。它们之间的区别如下图所示。RDF一个重要的设计原则是数据的易发布以及共享,图数据库则把重点放在了高效的图查询和sousuo上。其次,RDF以三元组的方式来存储数据而且不包含属性信息,但图数据库一般以属性图为基本的表示形式,所以实体和关系可以包含属性,这就意味着更容易表达现实的业务场景。

知识图谱——技术与行业应用

根据最新的统计(2018年上半年),图数据库仍然是增长最快的存储系统。相反,关系型数据库的增长基本保持在一个稳定的水平。同时,我们也列出了常用的图数据库系统以及他们最新使用情况的排名。 其中Neo4j系统目前仍是使用率最高的图数据库,它拥有活跃的社区,而且系统本身的查询效率高,但唯一的不足就是不支持准分布式。相反,OrientDB和JanusGraph(原Titan)支持分布式,但这些系统相对较新,社区不如Neo4j活跃,这也就意味着使用过程当中不可避免地会遇到一些刺手的问题。如果选择使用RDF的存储系统,Jena或许一个比较不错的选择。

知识图谱——技术与行业应用

知识图谱在其他行业中的应用

除了金融领域,知识图谱的应用可以涉及到很多其他的行业,包括医疗、教育、证券投资、推荐等等。其实,只要有关系存在,则有知识图谱可发挥价值的地方。 在这里简单举几个垂直行业中的应用。

比如对于教育行业,我们经常谈论个性化教育、因材施教的理念。其核心在于理解学生当前的知识体系,而且这种知识体系依赖于我们所获取到的数据比如交互数据、评测数据、互动数据等等。为了分析学习路径以及知识结构,我们则需要针对于一个领域的概念知识图谱,简单来讲就是概念拓扑结构。在下面的图中,我们给出了一个非常简单的概念图谱:比如为了学习逻辑回归则需要先理解线性回归;为了学习CNN,得对神经网络有所理解等等。所有对学生的评测、互动分析都离不开概念图谱这个底层的数据。

知识图谱——技术与行业应用

在证券领域,我们经常会关心比如“一个事件发生了,对哪些公司产生什么样的影响?” 比如有一个负面消息是关于公司1的高管,而且我们知道公司1和公司2有种很密切的合作关系,公司2有个主营产品是由公司3提供的原料基础上做出来的。

知识图谱——技术与行业应用

其实有了这样的一个知识图谱,我们很容易回答哪些公司有可能会被这次的负面事件所影响。当然,仅仅是“有可能”,具体会不会有强相关性必须由数据来验证。所以在这里,知识图谱的好处就是把我们所需要关注的范围很快给我们圈定。接下来的问题会更复杂一些,比如既然我们知道公司3有可能被这次事件所影响,那具体影响程度有多大? 对于这个问题,光靠知识图谱是很难回答的,必须要有一个影响模型、以及需要一些历史数据才能在知识图谱中做进一步推理以及计算。

实践上的几点建议

首先,知识图谱是一个比较新的工具,它的主要作用还是在于分析关系,尤其是深度的关系。所以在业务上,首先要确保它的必要性,其实很多问题可以用非知识图谱的方式来解决。

知识图谱领域一个最重要的话题是知识的推理。 而且知识的推理是走向强人工智能的必经之路。但很遗憾的,目前很多语义网络的角度讨论的推理技术(比如基于深度学习,概率统计)很难在实际的垂直应用中落地。其实目前最有效的方式还是基于一些规则的方法论,除非我们有非常庞大的数据集。

最后,还是要强调一点,知识图谱工程本身还是业务为重心,以数据为中心。不要低估业务和数据的重要性

总之知识图谱是一个既充满挑战而且非常有趣的领域。只要有正确的应用场景,对于知识图谱所能发挥的价值还是可以期待的。我相信在未来不到2,3年时间里,知识图谱技术会普及到各个领域当中。

知识图谱知识点:

一、知识图谱概论

1.1知识图谱的起源和历史

1.2知识图谱的发展史——从框架、本体论、语义网、链接数据到知识图谱

1.3知识图谱的本质和价值

1.4知识图谱VS传统知识库VS关系数据库

1.5经典的知识图谱

医学知识图谱,基因知识图谱等知识图谱项目

二、知识图谱应用

2.1知识图谱应用场景

2.2知识图谱应用简介

三、知识表示与知识建模

3.1知识表示概念

3.2 知识表示方法

3.3典型知识库项目的知识表示

3.4知识建模方法学

3.5知识表示和知识建模实践

四、知识抽取与挖掘

4.1知识抽取基本问题

4.2数据采集和获取

4.3面向结构化数据的知识抽取

4.4面向半结构化数据的知识抽取

4.5.面向非结构化数据的知识抽取

4.6.知识挖掘

4.7知识抽取上机实践

五、知识融合

5.1知识融合背景

5.2知识异构原因分析

5.3知识融合解决方案分析

5.4.本体对齐基本流程和常用方法

5.5实体匹配基本流程和常用方法

5.6 知识融合上机实践

六、存储与检索

6.1.知识图谱的存储与检索概述

6.2.知识图谱的存储

6.3.知识图谱的检索

6.4.上机实践案例:利用GraphDB完成知识图谱的存储与检索

七、知识推理

7.1.知识图谱中的推理技术概述

7.2.归纳推理:学习推理规则

上机实践案例:利用AMIE+算法完成Freebase数据上的关联规则挖掘

7.3.演绎推理:推理具体事实

7.4.基于分布式表示的推理

7.5.上机实践案例:利用分布式知识表示技术完成Freebase上的链接预测

八、语义sousuo

8.1.语义sousuo概述

8.2.sousuo重点技术

8.3.知识图谱sousuo

8.4.知识可视化 a.摘要技术

8.5.上机实践案例:SPARQLsousuo

九、知识问答

9.1.知识问答概述

9.2.知识问答基本流程

9.3.相关测试集:QALD、WebQuestions等

9.4.知识问答重点技术

9.5.上机实践案例:DeepQA、TemplateQA

人工智能技术与咨询了解更多相关信息及知识

点赞
收藏
评论区
推荐文章
知识图谱Knowledge Graph构建与应用
《新一代人工智能发展规划》明确提出了“建立新一代人工智能关键共性技术体系”的重点任务,特别强调了要解决“研究跨媒体统一表征、关联理解与知识挖掘、知识图谱构建与学、知识演化与推理、智能描述与生成等技术,开发跨媒体分析推理引擎与验证系统”的关键共性技术问题。一、知识图谱概论1.1知识图谱的起源和历史1.2知识图谱的发展史——从框架、本体论、语义网、链
Stella981 Stella981
3年前
Jure Leskovec等顶尖学者倾情授课,斯坦福知识图谱课程完结
  机器之心报道  参与:杜伟、魔王斯坦福知识图谱春季课程视频上线B站,领域内顶尖学者和业界大牛倾情授课,对知识图谱感兴趣的小伙伴赶紧去观看吧!  从Google搜索,到聊天机器人、大数据风控、证券投资、智能医疗、自适应教育、推荐系统,这些应用无一不跟知识图谱相关。知识图谱在技术领域的热度也在逐渐上升。  但
python如何分布式和高并发爬取电商数据
随着互联网的发展和数据量的不断增加,网络爬虫已经成为了一项非常重要的工作。爬虫技术可以帮助人们自动地从互联网上获取大量数据,并且这些数据可以应用于各种领域,如搜索引擎、数据分析和预测等。然而,在实际应用中,我们面临的一大难题就是如何高效地爬取大量数据。分布
四儿 四儿
1年前
语音数据集在智能客服系统中的应用与挑战
一、引言随着互联网和移动设备的普及,客户与企业的交互方式正在发生深刻变化。智能客服系统作为连接客户与企业的桥梁,发挥着越来越重要的作用。语音数据集在智能客服系统中具有广泛的应用,能够提高客户服务的效率和质量。本文将详细介绍语音数据集在智能客服系统中的应用、
四儿 四儿
11个月前
智能语音助手在医疗行业的应用与挑战
一、引言随着人工智能技术的不断发展,智能语音助手在医疗行业的应用越来越广泛。语音数据集在医疗智能语音助手中发挥着重要作用,为系统提供了丰富的语音数据和信息,提高了医疗服务的效率和质量。本文将详细介绍语音数据集在医疗智能语音助手中的应用、面临的挑战以及未来的
胡赤儿 胡赤儿
8个月前
知识图谱技术的深度解析与应用前景展望
在数字化时代,信息爆炸式增长,如何有效地组织、存储和查询知识成为了一个亟待解决的问题。知识图谱作为一种新型的知识表示和组织方式,正逐渐成为信息领域的研究热点。本文将对知识图谱的技术原理、构建方法以及应用前景进行深度解析,旨在为读者提供一个全面而深入的了解。
幂简集成 幂简集成
1天前
2024年最受欢迎的医疗服务API接口
随着医疗健康行业的快速发展,医疗服务API已成为连接患者、医生、医疗机构和药企的重要桥梁。在数字化转型的浪潮中,API不仅提高了医疗服务的效率和质量,也为患者带来了更加便捷和个性化的医疗体验。从早期的简单查询功能到现在的智能分析和个性化推荐,医疗服务API的技术演进反映了医疗健康行业的创新和进步。随着大数据、人工智能等技术的应用,医疗服务API正变得越来越智能,能够提供更加精准和高效的服务。
知识图谱自动化构建的探索与挑战
知识图谱自动化构建的探索与挑战|论文分享达观数据知识图谱的自动化构建是知识图谱中具有极强挑战性且巨大应用价值的技术方向。就实体抽取技术,达观数据副总裁、上海市人工智能技术标准委员会委员王文广提到“狭义的实体抽取,即命名实体识别(NER)技术发展至今已较为成熟,能够很好地抽取出人名、地名、机构名等少数类型的实体。但在知识图谱实际应用中,则需要抽取出各式各样各不