财务数据处理问题及解决方案分享

京东云开发者
• 阅读 328

一、平台介绍

财务自营计费主要承接京东自营数据在整个供应链中由C端转B端的功能实现,在整个供应链中属于靠后的阶段了,系统主要功能是计费和向B端的汇总。

二、问题描述

近年来自营计费数据量大增,有百亿+的数据量,一天中汇总占据了一半的数据库资源。

1、每天从单表千万W+中定位几万数据执行汇总,即全库全表执行group by操作,32库*32表,每天要花12小时处理。

2、汇总期间,系统基本停滞,导致了消息、任务处理慢,积压多,数据无法及时计费。

3、数据库压力大,有随时崩溃的风险。

4、影响供应商体验,大促期间供应商要实时查看销售数据,出战报,系统无法及时响应。

三、原技术介绍

系统汇总核心是依靠MySQL物理机在每库每表通过group by进行,汇总是按费用类型分而治之,每种类型汇总维度不一样,每次如有新的汇总维度引入,需从前到后,写一遍新的汇总逻辑,主要是锁定新维度的数据范围,确定新的group by 字段,之前逻辑还得回归测试,很蠢是吧,我也觉得。

四、解决问题的思路和办法

根据以上的背景和问题,确定大致的解决问题思路

1、首先要脱离MySQL汇总,数据库是很脆弱的,要保护数据库,不然量级一直递增,总有天塌的一天。

2、顺带解决新需求重复开发的弊端。

五、实践过程描述

由于量大,业务上允许T+1处理,既然是离线数据处理,一般都能想到spark,spring batch,finlk等,在技术调研阶段,主要考虑成熟性,社区活跃度,主要采用spark技术。按照汇总的流程划分4个步骤。以下内容为了通俗易懂,简化了逻辑进行简单描述下。

财务数据处理问题及解决方案分享

1、数据抓取

汇总前数据,就是业务数据,type泛指业务数据中划分数据费用类型的字段,ou、dept泛指源数据的维度,可以是别的一个或者多个字段,amount就是要汇总求和的字段,此处用金额表示。

配置表,就是针对源数据衍生出来的,配置数据可以由很多个,是泛指,本系统只用到了一张。type表示费用类型用来和源数据关联使用,关联可以用一个或者多个字段关联,此处用一个字段举例,merge_key是汇总的字段,字段取值是从源数据的表结构的一个或者多个字段组成。invoice_type,代表汇总后的结果集需要填充的公共字段,此处用发票类型来泛指。可以根据填充的字段扩充,扩充的话在配置表中往后增加列即可。如下示例图以单个字段表达这个意思。

财务数据处理问题及解决方案分享

2、规则匹配

进行第一次加工,即把源数据中的每一行和配置表中的唯一一行关联,如下图,特殊说明下,源数据的每一行,在配置表中有且仅有一行配置可以关联上,即left join,无法关联上的,即无配置,过滤掉,不进行汇总。第一步骤加工操作是在内存中操作完成。

财务数据处理问题及解决方案分享

然后进行第二步骤加工,此步骤我们需要把从配置表中取出的merger_key字段进一步解析成当前left join后的行所对应字段的具体值。解析后的结果如下图,此步骤说明下,根据merger_key的字段,比如第一行ou,获取本行对应列的字段值,就是81,原理是通过Java反射实现,现在已有各种开源的工具包可以直接用,如spring的表达式等工具。以此类推,也能获取多个字段的值,多个字段可以按照一定的连接符号拼接,此图以_拼接。填充字段也同步进行添加。

财务数据处理问题及解决方案分享

3、数据汇总

规则匹配数据加工完毕后,我们只需要对加工完毕后的merger_key字段进行汇总,汇总引擎中只需要按照固定的汇总字段(此处举例是第二步骤加工完毕后的merger_key字段),汇总的逻辑就能够固化下来,只需要1个通用sql即可实现所有费用类型的汇总,最终产生的汇总结果。

4、汇总结果

汇总后的数据和通过原技术实现汇总出来的数据能保持一样的结果,同时还能填充一些公共的字段。如下图,其中绿色的2行源数据,按ou汇总在结果表中变成1行;橙色的3行源数据按dept汇总在结果表中变成2行;黄色的源数据按ou、dept字段汇总变成3行。

财务数据处理问题及解决方案分享

最后把这个汇总结果回写到MySQL即可。

六、实践过程思考和效果评价

1、在测试环境验证的过程中,测试表和线上表表数量级别不一样,初上线时,读取数据超慢。由于spark读取单表速度很快,读取分库分表数据效率直线下降,此处采用多线程方式去读符合条件的未汇总数据,最后汇总一个大集合。

2、上线稳定运行一段时间后,性能对比图,主要是通过剥离了MySQL中执行group by的操作,汇总时长下降了,数据库性能提高了,进而处理消息和异步任务能力也提高了,牵一发而影响全局。

财务数据处理问题及解决方案分享

3、后续有新的汇总需求上线时,通过配置即可实现新维度汇总功能,简化了研发工作,提高了需求交付时效。弊端也是有的,目前汇总维度的字段必须要从主表里取,因为spark读取业务数据只读取了主表,未读取扩展表。后续对hive表数据质量有信心,可以改成spark直接读取hive表,或者读es,ck等库。

4、通过spark框架引入、把大库汇总从在线改成离线,缓解了数据库压力,数据库性能提升后,从而也提升了计费的实效性,同时还增加了系统的稳定性,提升了供应商体验。

作者:王石根

来源:京东云开发者社区 转载请注明来源

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java版本springcloud+springboot+mybatis 分布式 微服务 多租户 电子商务 直播带货 短视频带货 社交电商平台
涉及平台:平台管理(包含自营店面)、商家端(PC端、手机端)、买家平台(PC端、H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务)核心架构:SpringCloud、SpringBoot、Mybatis、Redis、SFTP前端框架:VUE、Uniapp、Bootstrap/H5/CSS3、IOS、Android、小程
随机高并发查询结果一致性设计实践
物流合约中心是京东物流合同管理的唯一入口。为商家提供合同的创建,盖章等能力,为不同业务条线提供合同的定制,归档,查询等功能。由于各个业务条线众多,为各个业务条线提供高可用查询能力是物流合约中心重中之重。同时计费系统在每个物流单结算时,都需要查询合约中心,确保商家签署的合同内容来保证计费的准确性。
Stella981 Stella981
3年前
Redis几个问题总结
redis持久化策略redis是一个内存数据库,但是它提供了持久化机制。即把数据永久的存储在磁盘上。我们来看看这个redis保存数据的流程(1)客户端向服务端发送写操作(数据在客户端的内存中)。(2)数据库服务端接收到写请求的数据(数据在服务端的内存中)。(3)服务端调用write这个系统调用,将数据往磁盘上写(数据在系
以数据思维和技能提升数据应用测试实践 | 京东云技术团队
作者:京东零售周雪梅以数据思维和技能提高测试覆盖率和效率。数据应用测试,功能测试主要聚焦在数据流向(输入和输出)。一、背景数据质量组当前主要承接黄金眼和商智中的供应链模块,商智包括PC(品牌版:商家端,运营端)和M端。各模块的产品特征和测试范围和策略的通用
京东云开发者 京东云开发者
9个月前
对号入座,快看看你的应用系统用了哪些高并发技术?
一系统简介百舸流量运营平台承接着京东金融APP核心资源位和京东APP部分重要资源位,大促单接口QPS达到10w,压测单接口到20w,典型的c端读链路高并发场景。接下来,聊聊我们的系统都有哪些应对高并发的“武功秘籍”。二“武功秘籍”1缓存(redis缓存
京东云开发者 京东云开发者
1个月前
十亿级订单系统的数据库查询性能优化之路
作者:京东零售崔健0.前言•系统概要:BIP采购系统用于京东采销部门向供应商采购商品,并且提供了多种创建采购单的方式以及采购单审批、回告、下传回传等业务功能•系统价值:向供应商采购商品增加库存,满足库存周转及客户订单的销售,供应链最重要的第一环节1.背景采
京东云开发者 京东云开发者
2星期前
京东供应链创新与实践:应用数据驱动的库存选品和调拨算法提升履约效率
作者:京东零售康宁轩摘要在电商行业中,供应链管理和履约效率对于确保客户满意度至关重要。京东在这一领域一贯表现出色,得益于完善的物流基础设施,超过90%的自营订单可在24小时内完成履约,这一快速交付承诺显著提升了客户满意度,并使京东在竞争中脱颖而出。今年10
京东云开发者 京东云开发者
2星期前
供应链计划性能优化解决方案-Clickhouse本地Join
作者:京东零售姜波前言本文主要针对供应链计划业务发展过程中系统产生的瓶颈问题的解决方案进行阐述,并且分享一些问题解决过程中用到的一些工具方法,希望对其他业务同类问题提供启发,原理细节不着重介绍,如有兴趣欢迎一起探讨。业务背景供应链计划业务目前数据库主要使用
京东云开发者|mysql基于binlake同步ES积压解决方案
1背景与目标1.1背景国际财务泰国每月月初账单任务生成,或者重算账单数据,数据同步方案为mysql通过binlake同步ES数据,在同步过程中发现计费事件表,计费结果表均有延迟,ES数据与Mysql数据不一致,导致业务页面
性能提升,成本降低,原生数据库的崛起
腾讯高级工程师杨宇基介绍,作为国内首个云原生无服务器数据库,TDSQLC实现了自动伸缩三大目标,可以根据业务负载进行伸缩。开发者不需要提前预测负载和扩展资源;按使用量计费,按实际使用负载计费,开发者不需要为未使用的资源付费;没有使用,没有付款,没有数据请求