日志收集系统架构
1.项目背景
a. 每个系统都有日志,当系统出现问题时,需要通过日志解决问题
b. 当系统机器比较少时,登陆到服务器上查看即可满足
c. 当系统机器规模巨大,登陆到机器上查看几乎不现实
2.解决方案
a. 把机器上的日志实时收集,统一的存储到中心系统
b. 然后再对这些日志建立索引,通过搜索即可以找到对应日志
c. 通过提供界面友好的web界面,通过web即可以完成日志搜索
面临的问题
a. 实时日志量非常大,每天几十亿条
b. 日志准实时收集,延迟控制在分钟级别
c. 能够水平可扩展
ELK介绍
• 中文指南https://www.gitbook.com/book/chenryn/elk-stack-guide-cn/details
• ELKStack (5.0版本之后)--> ElasticStack == (ELKStack + Beats)
• ELK Stack包含:ElasticSearch、Logstash、Kibana
• ElasticSearch是一个搜索引擎,用来搜索、分析、存储日志。它是分布式的,也就是说可以横向扩容,可以自动发现,索引自动分片,总之很强大。文档https://www.elastic.co/guide/cn/elasticsearch/guide/current/index.html
• Logstash用来采集日志,把日志解析为json格式交给ElasticSearch。
• Kibana是一个数据可视化组件,把处理后的结果通过web界面展示
• Beats在这里是一个轻量级日志采集器,其实Beats家族有5个成员
• 早期的ELK架构中使用Logstash收集、解析日志,但是Logstash对内存、cpu、io等资源消耗比较高。相比 Logstash,Beats所占系统的CPU和内存几乎可以忽略不计
• x-pack对ElasticStack提供了安全、警报、监控、报表、图表于一身的扩展包,是收费的
elk方案问题
a. 运维成本高,每增加一个日志收集,都需要手动修改配置
b. 监控缺失,无法准确获取logstash的状态
c. 无法做定制化开发以及维护
日志收集系统设计
Kafka消息队列
数据解耦
a. Log Agent,日志收集客户端,用来收集服务器上的日志
b. Kafka,高吞吐量的分布式队列,linkin开发,apache顶级开源项目
c. ES,elasticsearch,开源的搜索引擎,提供基于http restful的web接口
d. Hadoop,分布式计算框架,能够对大量数据进行分布式处理的平台
zookeeper
Zookeeper 作为一个分布式的服务框架,主要用来解决分布式集群中应用系统的一致性问题,它能提供基于类似于文件系统的目录节点树方式的数据存储, Zookeeper 作用主要是用来维护和监控存储的数据的状态变化,通过监控这些数据状态的变化,从而达到基于数据的集群管理
简单的说,zookeeper=文件系统+通知机制
a. 安装JDK,从oracle下载最新的SDK安装
b. 安装zookeeper3.3.6,下载地址:http://apache.fayea.com/zookeeper/
1)mv conf/zoo_sample.cfg conf/zoo.cfg
2)编辑 conf/zoo.cfg,修改dataDir
# the directory where the snapshot is stored.
dataDir=/tmp/zookeeper/data
# the port at which the clients will connect
clientPort=2181
dataLogDir=/tmp/zookeeper/log
3)vim /etc/profile
export PATH=$PATH:/usr/local/zookeeper/bin
source /etc/profile
运行:
[root@greg02 zookeeper]#zkServer.sh start
JMX enabled by default
Using config: /usr/local/zookeeper/bin/../conf/zoo.cfg
Starting zookeeper ... STARTED
kafka
1.打开链接:http://kafka.apache.org/downloads.html
下载https://www.apache.org/dyn/closer.cgi?path=/kafka/0.11.0.2/kafka\_2.12-0.11.0.2.tgz
2.打开config目录下的server.properties, 修改log.dirs为D:kafka_logs,修改advertised.host.name=服务器ip
3.启动kafka
[root@greg02 kafka]#kafka-server-start.sh config/server.properties
kafka消费者开启
[root@greg02 kafka]#kafka-console-consumer.sh --topic nginx_log --zookeeper 127.0.0.1 2181
Using the ConsoleConsumer with old consumer is deprecated and will be removed in a future major release. Consider using the new consumer by passing [bootstrap-server] instead of [zookeeper].
[2018-02-05 18:30:22,451] WARN Connected to an old server; r-o mode will be unavailable (org.apache.zookeeper.ClientCnxnSocket)
[2018-02-05 18:30:22,597] WARN Connected to an old server; r-o mode will be unavailable (org.apache.zookeeper.ClientCnxnSocket)
go kafka
package main
import (
"fmt"
"time"
"github.com/Shopify/sarama"
)
func main() {
config := sarama.NewConfig()
config.Producer.RequiredAcks = sarama.WaitForAll
config.Producer.Partitioner = sarama.NewRandomPartitioner
config.Producer.Return.Successes = true
client, err := sarama.NewSyncProducer([]string{"192.168.179.130:9092"}, config)
if err != nil {
fmt.Println("producer close, err:", err)
return
}
defer client.Close()
msg := &sarama.ProducerMessage{}
msg.Topic = "nginx_log"
msg.Value = sarama.StringEncoder("this is a good test, my message is good")
pid, offset, err := client.SendMessage(msg)
if err != nil {
fmt.Println("send message failed,", err)
return
}
fmt.Printf("pid:%v offset:%v
", pid, offset)
time.Sleep(10 * time.Millisecond)
}
linux tail命令
-f 用于循环读取文件的内容,监视文件的增长
-F 与-f类似,区别在于当将监视的文件删除重建后-F仍能监视该文件内容-f则不行,-F有重试的功能,会不断重试
package main
import (
"fmt"
"github.com/hpcloud/tail"
"time"
)
func main() {
filename := "/root/passwd"
tails, err := tail.TailFile(filename, tail.Config{
ReOpen: true,
Follow: true,
//Location: &tail.SeekInfo{Offset: 0, Whence: 2},
MustExist: false,
Poll: true,
})
if err != nil {
fmt.Println("tail file err:", err)
return
}
var msg *tail.Line
var ok bool
for true {
msg, ok = <-tails.Lines
if !ok {
fmt.Printf("tail file close reopen, filename:%s
", tails.Filename)
time.Sleep(100 * time.Millisecond)
continue
}
fmt.Println("msg:", msg)
}
}
配置文件库使用
初始化配置库
iniconf, err := NewConfig("ini", "testini.conf") if err != nil { t.Fatal(err) }
读取配置项
• String(key string) string
• Int(key string) (int, error)
• Int64(key string) (int64, error)
• Bool(key string) (bool, error)
• Float(key string) (float64, error)
cofig的go实现
package main
import (
"fmt"
"github.com/astaxie/beego/config"
)
func main() {
conf, err := config.NewConfig("ini", "./logagent.conf")
if err != nil {
fmt.Println("new config failed, err:", err)
return
}
port, err := conf.Int("server::port")
if err != nil {
fmt.Println("read server:port failed, err:", err)
return
}
fmt.Println("Port:", port)
log_level := conf.String("logs::log_level")
if len(log_level) == 0 {
log_level = "debug"
}
fmt.Println("log_level:", log_level)
log_path := conf.String("logs::log_path")
fmt.Println("log_path:", log_path)
}
日志库的使用
配置log组件
config := make(map[string]interface{}) config["filename"] = "./logs/logcollect.log" config["level"] = logs.LevelDebug configStr, err := json.Marshal(config) if err != nil { fmt.Println("marshal failed, err:", err) return }
初始化日志组件
logs.SetLogger(“file”, string(configStr))
写日志
package main import ( "encoding/json" "fmt" "github.com/astaxie/beego/logs" ) func main() { config := make(map[string]interface{}) config["filename"] = "/root/logs/logcollect.log" config["level"] = logs.LevelDebug configStr, err := json.Marshal(config) if err != nil { fmt.Println("marshal failed, err:", err) return } logs.SetLogger(logs.AdapterFile, string(configStr)) logs.Debug("this is a test, my name is %s", "stu01") logs.Trace("this is a trace, my name is %s", "stu02") logs.Warn("this is a warn, my name is %s", "stu03") }