保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

京东云开发者
• 阅读 419

导读

在当今的人工智能时代,大型AI模型已成为获得人工智能应用程序的关键。但是,这些巨大的模型需要庞大的计算资源和存储空间,因此搭建这些模型并对它们进行交互需要强大的计算能力,这通常需要使用云计算服务。从云产品性能上来看,GPU云主机是最适合的工具之一,对于业务方或者个人开发者来讲,使用GPU云主机搭建AI大语言模型有以下优势:

•高性能计算:GPU云主机提供了高性能GPU处理器,加速模型的训练和推理;

•高性价比:灵活资源管理、可扩展性、弹性伸缩等云计算优势,根据业务或个人训练的需要,快速调整计算资源,满足模型的训练和部署需求;

•开放性:云计算的开放性让用户更容易进行资源的共享和协作,为AI模型的研究和应用提供了更广泛的合作机会;

•丰富的API和SDK:云计算厂商提供了丰富的API和SDK,使得用户能够轻松地接入云平台的各种服务和功能,进行定制化开发和集成。

在本文中,我们将以chatglm-6b为例详细介绍GPU云主机搭建AI大语言模型的过程,并使用Flask构建前端界面与该模型进行对话。

整个流程也比较简单:配置GPU云主机 → 搭建Jupyterlab开发环境 → 安装ChatGLM → 用Flask输出模型API

一、Start:配置GPU云主机

GPU 云主机(GPU Cloud Virtual Machine )是提供 GPU 算力的弹性计算服务,具有超强的并行计算能力,在深度学习、科学计算、图形图像处理、视频编解码等场景被广泛使用。GPU驱动,提供大量的GPU内存和强悍的计算性能,非常适合运行深度学习应用程序。

相对于实体卡,一张售价一般都是几万左右,而GPU云主机费用门槛很低,按时计费,一小时才十几元,可以根据自己的需求调配。

•本次选取的是P40卡: https://www.jdcloud.com/cn/calculator/calHost

•系统环境:Ubuntu 20.04 64位

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

二、搭建Jupyterlab开发环境

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

下载Anaconda包需要在终端里执行以下命令:

mkdir anaconda # 创建文件夹
cd anaconda # 进入文件夹
wget https://repo.anaconda.com/archive/Anaconda3-2023.03-Linux-x86_64.sh # 下载安装包
bash Anaconda3-2023.03-Linux-x86_64.sh # 安装

也可以用清华源,速度更快:https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-2023.03-Linux-x86_64.sh

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

接下来进行环境变量设置

cd /root/anaconda3/bin
vim ~/.bashrc

在.bashrc下添加以下内容:#Anaconda
export PATH="/root/anaconda3/bin:$PATH"

然后退出编辑

source ~/.bashrc


conda create -n jabari python=3.8  安装python3.8版本
# 创建环境
jupyter lab --generate-config

# 生成配置文件

Writing default config to: /root/.jupyter/jupyter_lab_config.py

[root@lavm-ba6po1r9fh bin]# vim /root/.jupyter/jupyter_lab_config.py 



# 编辑配置文件

c.ServerApp.ip = '*' # 设置访问的IP地址

c.ServerApp.open_browser = False  

# 不自动打开浏览器

c.ServerApp.port = 6888   #(自己可以自己设置端口,这里设置了6888)

# ServerApp的端口号

c.MappingKernelManager.root_dir = '/root/jupyter_run' 

# 设置Jupyter Notebook的根文件夹

c.ServerApp.allow_remote_access = True 

# 允许远程访问

c.ServerApp.password = '' 

# 不设置登录密码

c.ServerApp.allow_origin='*' 

# 允许任何来源的请求

c.ServerApp.password_required = False 

# 不需要密码

c.ServerApp.token = ''

# 不设置验证token



jupyter lab --allow-root # 启动JupyterLab

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

之后,在本地浏览器输入"服务器ip:端口号"访问即可:

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

也可以安装汉化软件:

pip install -i https://pypi.tuna.tsinghua.edu.cn/simple jupyterlab-language-pack-zh-CN

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

三、重点来了:开始安装ChatGLM语言模型

https://huggingface.co/THUDM/chatglm-6b

ChatGLM-6B 是一个开源的、支持中英双语问答的对话语言模型,基于 General Language Model (GLM) 架构,具有 62 亿参数。结合模型量化技术,用户可以在消费级的显卡上进行本地部署(INT4 量化级别下最低只需 6GB 显存)。ChatGLM-6B 使用了和 ChatGLM 相同的技术,针对中文问答和对话进行了优化。经过约 1T 标识符的中英双语训练,辅以监督微调、反馈自助、人类反馈强化学习等技术的加持,62 亿参数的 ChatGLM-6B 已经能生成相当符合人类偏好的回答。

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

先安装语言依赖

pip install protobuf==3.20.0 transformers==4.27.1 icetk cpm_kernels

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

然后在jupyter运行代码

from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
response, history = model.chat(tokenizer, "你好", history=[])
print(response)
response, history = model.chat(tokenizer, "晚上睡不着应该怎么办", history=history)
print(response)



这里会直接从huggingface.co下载

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

最终下载完后,再次运行,提示

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

这里需要安装显卡驱动同时还要安装nvidia-cuda-toolkit

NVIDIA CUDA Toolkit 提供了一个开发环境,用于创建高性能 GPU 加速应用程序。

apt install nvidia-cuda-toolkit

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

再次运行,已经ok了,出现模型回复内容

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

这里在命令行输入nvidia-smi 也看下显卡类型:

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

四、用Flask输出模型API

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

app.py的代码如下:

from gevent import pywsgi
from flask import Flask
from flask_restful import Resource, Api, reqparse
from transformers import AutoTokenizer, AutoModel
from flask_cors import CORS

app = Flask(__name__)
CORS(app, resources={r"/api/*": {"origins": "*"}})
api = Api(app)

tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()

parser = reqparse.RequestParser()
parser.add_argument('inputs', type=str, help='Inputs for chat')
parser.add_argument('history', type=str, action='append', help='Chat history')

class Chat(Resource):
    def post(self):
        args = parser.parse_args()
        inputs = args['inputs']
        history = args['history'] or []

        response, new_history = model.chat(tokenizer, inputs, history)
        return {'response': response, 'new_history': new_history}

api.add_resource(Chat, '/api/chat')
if __name__ == '__main__':
    server = pywsgi.WSGIServer(('0.0.0.0', 80), app)
    server.serve_forever()



最后在Terminal 里 执行python 目录地址/app.py

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

客户端,开发者可以通过API来获取数据:

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

五、前端效果:问问五一去哪玩!

你可以自定义UI效果,比如胡老师用5分钟搞定的Demo——

保姆级教程:用GPU云主机搭建AI大语言模型并用Flask封装成API,实现用户与模型对话

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
PPDB:今晚老齐直播
【今晚老齐直播】今晚(本周三晚)20:0021:00小白开始“用”飞桨(https://www.oschina.net/action/visit/ad?id1185)由PPDE(飞桨(https://www.oschina.net/action/visit/ad?id1185)开发者专家计划)成员老齐,为深度学习小白指点迷津。
Wesley13 Wesley13
3年前
VBox 启动虚拟机失败
在Vbox(5.0.8版本)启动Ubuntu的虚拟机时,遇到错误信息:NtCreateFile(\\Device\\VBoxDrvStub)failed:0xc000000034STATUS\_OBJECT\_NAME\_NOT\_FOUND(0retries) (rc101)Makesurethekern
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
PHP创建多级树型结构
<!lang:php<?php$areaarray(array('id'1,'pid'0,'name''中国'),array('id'5,'pid'0,'name''美国'),array('id'2,'pid'1,'name''吉林'),array('id'4,'pid'2,'n
Wesley13 Wesley13
3年前
Java日期时间API系列36
  十二时辰,古代劳动人民把一昼夜划分成十二个时段,每一个时段叫一个时辰。二十四小时和十二时辰对照表:时辰时间24时制子时深夜11:00凌晨01:0023:0001:00丑时上午01:00上午03:0001:0003:00寅时上午03:00上午0
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Stella981 Stella981
3年前
Jenkins 插件开发之旅:两天内从 idea 到发布(上篇)
本文首发于:Jenkins中文社区(https://www.oschina.net/action/GoToLink?urlhttp%3A%2F%2Fjenkinszh.cn)!huashan(https://oscimg.oschina.net/oscnet/f499d5b4f76f20cf0bce2a00af236d10265.jpg)
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_