时间复杂度为 O (n^2) 的排序算法 | 京东物流技术团队

京东云开发者
• 阅读 300

对于小规模数据,我们可以选用时间复杂度为 O(n2) 的排序算法。因为时间复杂度并不代表实际代码的执行时间,它省去了低阶、系数和常数,仅代表的增长趋势,所以在小规模数据情况下, O(n2) 的排序算法可能会比 O(nlogn) 的排序算法执行效率高。不过随着数据规模增大, O(nlogn) 的排序算法是不二选择。本篇我们主要对 O(n2) 的排序算法进行介绍,在介绍之前,我们先了解一下算法特性:

  • 算法特性:

    • 稳定性:经排序后,若等值元素之间的相对位置不变则为稳定排序算法,否则为不稳定排序算法

    • 原地排序:是否借助额外辅助空间

    • 自适应性: 自适应性排序受输入数据的影响,即最佳/平均/最差时间复杂度不等,而非自适应排序时间复杂度恒定

本篇我们将着重介绍插入排序,选择排序和冒泡排序了解即可。

插入排序

插入排序的工作方式像整理手中的扑克牌一样,即不断地将每一张牌插入到其他已经有序的牌中适当的位置。

插入排序的当前索引元素左侧的所有元素都是有序的:若当前索引为 i,则 [0, i - 1] 区间内的元素始终有序,这种性质被称为循环不变式,即在第一次迭代、迭代过程中和迭代结束时,这种性质始终保持不变。

不过,这些有序元素的索引位置暂时不能确定,因为它们可能需要为更小的元素腾出空间而向右移动。插入排序的代码实现如下:

    private void sort(int[] nums) {
        for (int i = 1; i < nums.length; i++) {
            int base = nums[i];

            int j = i - 1;
            while (j >= 0 && nums[j] > base) {
                nums[j + 1] = nums[j--];
            }
            nums[j + 1] = base;
        }
    }

它的实现逻辑是取未排序区间中的某个元素为基准数base,将base与其左侧已排序区间元素依次比较大小,并"插入"到正确位置。插入排序对部分有序(数组中每个元素距离它的最终位置都不远或数组中只有几个元素的位置不正确等情况)的数组排序效率很高。事实上,当逆序很少或数据量不大(n2和nlogn比较接近)时,插入排序可能比其他任何排序算法都要快,这也是一些编程语言的内置排序算法在针对小数据量数据排序时选择使用插入排序的原因。

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 稳定排序

  • 自适应排序:当数组为升序时,时间复杂度为 O(n);当数组为降序时,时间复杂度为 O(n2)

希尔排序

插入排序对于大规模乱序数组排序很慢,因为它只会交换相邻的元素,所以元素只能一步步地从一端移动到另一端,如果最小的元素恰好在数组的最右端,要将它移动到正确的位置需要移动 N - 1 次。

希尔排序是基于插入排序改进的排序算法,它可以交换不相邻的元素以对数组的局部进行排序,并最终用插入排序将局部有序的数组排序。它的思想是使数组中间隔为 h 的元素有序(h 有序数组),如下图为间隔为 4 的有序数组:

时间复杂度为 O (n^2) 的排序算法 | 京东物流技术团队

排序之初 h 较大,这样我们能将较小的元素尽可能移动到靠近左端的位置,为实现更小的 h 有序创造便利,最后一次循环时 h 为 1,便是我们熟悉的插入排序。这就是希尔排序的过程,代码实现如下:

    private void sort(int[] nums) {
        int N = nums.length;
        int h = 1;
        while (h < N / 3) {
            h = 3 * h + 1;
        }

        while (h >= 1) {
            for (int i = h; i < N; i++) {
                int base = nums[i];

                int j = i - h;
                while (j >= 0 && nums[j] > base) {
                    nums[j + h] = nums[j];
                    j -= h;
                }
                nums[j + h] = base;
            }

            h /= 3;
        }
    }

希尔排序更高效的原因是它权衡了子数组的规模和有序性,它也可以用于大型数组。排序之初,各个子数组都很短,排序之后子数组都是部分有序的,这两种情况都很适合插入排序。


选择排序

选择排序的实现非常简单:每次选择未排序数组中的最小值,将其放到已排序区间的末尾,代码实现如下:

    private void sort(int[] nums) {
        for (int i = 0; i < nums.length; i++) {
            int min = i;
            for (int j = i + 1; j < nums.length; j++) {
                if (nums[j] < nums[min]) {
                    min = j;
                }
            }
            swap(nums, i, min);
        }
    }

    private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 非稳定排序:会改变等值元素之间的相对位置

  • 非自适应排序:最好/平均/最坏时间复杂度均为 O(n2)

冒泡排序

冒泡排序通过连续地比较与交换相邻元素实现排序,每轮循环会将未被排序区间内的最大值移动到数组的最右端,这个过程就像是气泡从底部升到顶部一样,代码实现如下:

    public void sort(int[] nums) {
        for (int i = nums.length - 1; i > 0; i--) {
            // 没有发生元素交换的标志位
            boolean flag = true;
            for (int j = 0; j < i; j++) {
                if (nums[j] > nums[j + 1]) {
                    swap(nums, j, j + 1);
                    flag = false;
                }
            }

            if (flag) {
                break;
            }
        }
    }

    private void swap(int[] nums, int i, int j) {
        int temp = nums[i];
        nums[i] = nums[j];
        nums[j] = temp;
    }

算法特性:

  • 空间复杂度:O(1)

  • 原地排序

  • 稳定排序

  • 自适应排序:经过优化后最佳时间复杂度为 O(n)


巨人的肩膀

  • 《算法导论 第三版》第 2.1 章

  • 《算法 第四版》第 2.1 章

  • 《Hello 算法》第 11 章

  • 排序算法-希尔排序

作者:京东物流 王奕龙

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
java 冒泡排序
思路1.将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素;(第一轮结束后,序列最后一个元素一定是当前序列的最大值;)2.对序列当中剩下的n1个元素再次执行步骤1。3.对于长度为n的序列,一共需要执行n1轮比较时间复杂度最佳情况:T(n)O(n)最差情况:T(n)O(n2)平均情
复杂度分析:如何分析、统计算法的执行效率和资源消耗
我们都知道,数据结构和算法本身解决的是“快”和“省”的问题,即如何让代码运行得更快,如何让代码更省存储空间。所以,执行效率是算法一个非常重要的考量指标。那如何来衡量你编写的算法代码的执行效率呢?这里就要用到我们今天要讲的内容:时间、空间复杂度分析。
Stella981 Stella981
3年前
Python数据结构与算法——散列(Hash)
!(https://oscimg.oschina.net/oscnet/19a7428dd9c64d149aa474d3aabe80ce.png)点击上方“蓝字”关注我们散列(Hash)对于一组数据项,顺序查找的时间复杂度是O(n),二分查找是O(logn),而对于散列的数据结构,
Wesley13 Wesley13
3年前
BFPRT线性查找算法
介绍:BFPRT算法解决的问题十分经典,即从某n个元素的序列中选出第k大(第k小)的元素,通过巧妙的分析,BFPRT可以保证在最坏情况下仍为线性时间复杂度。该算法的思想与快速排序思想相似,当然,为使得算法在最坏情况下,依然能达到o(n)的时间复杂度,五位算法作者做了精妙的处理。时间复杂度O(N)算法步骤
Stella981 Stella981
3年前
Lua 排序算法
冒泡排序(BubbleSort,台湾译为:泡沫排序或气泡排序)是一种简单的排序算法。它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。这个算法的名字由来是因为越小的元素会经由交换慢慢“浮”到数列的顶端。算法步骤1.有一个长度为n
京东云开发者 京东云开发者
2个月前
时间复杂度为 O(n^2) 的排序算法
作者:京东保险王奕龙对于小规模数据,我们可以选用时间复杂度为O(n2)的排序算法。因为时间复杂度并不代表实际代码的执行时间,它省去了低阶、系数和常数,仅代表的增长趋势,所以在小规模数据情况下,O(n2)的排序算法可能会比O(nlogn)的排序算法执行效率高
菜园前端 菜园前端
1年前
什么是时间复杂度?
原文链接:什么是时间复杂度?定性描述该算法的运行时间,一个函数、用大O表示,例如O(1)、O(n)、O(logN)...常见的时间复杂度量级常数阶O(1)对数阶O(logN)线性阶O(n)线性对数阶O(nlogN)平方阶O(n²)立方阶O(n)K次方阶O(
菜园前端 菜园前端
1年前
什么是空间复杂度?
原文链接:什么是空间复杂度?算法在运行过程中临时占用存储空间大小的度量,和时间复杂度表示一样,一个函数,用大O表示,例如O(1)、O(n)、O(^2)...基础案例O(1)这段代码因为只声明了单个变量,单个变量所占用的内存永远是1。javascriptle
菜园前端 菜园前端
1年前
什么是顺序搜索?
原文链接:什么是顺序搜索?顺序搜索是一种比较低效的搜索算法,但是实现起来相对简单。主要步骤如下:1.遍历数组2.找到跟目标值相等的元素,就返回它的下标3.遍历结束后,如果没有搜索到目标值,则返回1基础案例时间复杂度:O(n)空间复杂度:O(1)javasc
时间复杂度为 O(nlogn) 的排序算法 | 京东物流技术团队
归并排序归并排序遵循分治的思想:将原问题分解为几个规模较小但类似于原问题的子问题,递归地求解这些子问题,然后合并这些子问题的解来建立原问题的解,归并排序的步骤如下:划分:分解待排序的n个元素的序列成各具n/2个元素的两个子序列,将长数组的排序问题转换为短数