作业帮 Kubernetes 原生调度器优化实践

此账号已注销
• 阅读 8300

作者

吕亚霖,2019年加入作业帮,作业帮架构研发负责人,在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。

简介

调度系统的本质是为计算服务/任务匹配合适的资源,使其能够稳定高效地运行,以及在此的基础上进一步提高资源使用密度,而影响应用运行的因素非常多,比如 CPU、内存、IO、差异化的资源设备等等一系列因素都会影响应用运行的表现。同时,单独和整体的资源请求、硬件/软件/策略限制、 亲和性要求、数据区域、负载间的干扰等因素以及周期性流量场景、计算密集场景、在离线混合等不同的应用场景的交织也带来了决策上的多变。

调度器的目标则是快速准确地实现这一能力,但快速和准确这两个目标在资源有限的场景下会往往产生产生矛盾,需要在二者间权衡。

调度器原理和设计

K8s 默认调度器的整体工作框架,可以简单用下图概括:

作业帮 Kubernetes 原生调度器优化实践

两个控制循环

  1. 第一个控制循环,称为 Informer Path。它的主要工作,是启动一系列的 Informer,用来监听(Watch)集群中 Pod、Node、Service 等与调度相关的 API 对象的变化。比如,当一个待调度 Pod 被创建出来之后,调度器就会通过 Pod Informer 的 Handler,将这个待调度 Pod 添加进调度队列;同时,调度器还要负责对调度器缓存 Scheduler Cache 进行更新,并以这个 cache 为参考信息,来提高整个调度流程的性能。

  2. 第二个控制循环,即为对 pod 进行调度的主循环,称为 Scheduling Path。这一循环的工作流程是不断地从调度队列中取出待调度的 pod,运行2个步骤的算法,来选出最优 node。

  • 在集群的所有节点中,选出所有“可以”运行该 pod 的节点,这一步被称为 Predicates;

  • 在上一步选出的节点中,根据一些列优选算法对节点就行打分,选出“最优”即得分最高的节点,这一步被称为 Priorities。

调度完成之后,调度器就会为 pod 的 spec.NodeName 赋值这个节点,这一步称为 Bind。而为了不在主流程路径中访问 Api Server 影响性能,调度器只会更新 Scheduler Cache 中的相关 pod 和 node 信息:这种基于乐观的假设的 Api 对象更新方式,在 K8s 中称为 Assume。之后才会创建一个 goroutine 来异步地向 Api Server 发起更新 Bind 操作,这一步就算失败了也没有关系,Scheduler Cache 更新后就会一切正常。

大规模集群调度带来的问题和挑战

K8s 默认调度器策略在小规模集群下有着优异的表现,但是随着业务量级的增加以及业务种类的多样性变化,默认调度策略则逐渐显露出了局限性:调度维度较少,无并发,存在性能瓶颈,以及调度器越来越复杂。

迄今为止,我们当前单个集群规模节点量千级,pod 量级则在 10w 以上,整体资源分配率超过60%,其中更是包含了 gpu,在离线混合部署等复杂场景;在这个过程中,我们遇到了不少调度方面的问题。

问题1:高峰期的节点负载不均匀

默认调度器,参考的是 workload 的 request 值,如果我们针对 request 设置的过高,会带来资源的浪费;过低则有可能带来高峰期 CPU 不均衡差异严重的情况;使用亲和策略虽然可以一定程度避免这种,但是需要频繁填充大量的策略,维护成本就会非常大。而且服务的 request 往往不能体现服务真实的负载,带来差异误差。而这种差异误差,会在高峰时体现到节点负载不均上。

实时调度器,在调度的时候获取各节点实时数据来参与节点打分,但是实际上实时调度在很多场景并不适用,尤其是对于具备明显规律性的业务来说;比如我们大部分服务晚高峰流量是平时流量的几十倍,高低峰资源使用差距剧大,而业务发版一般选择低峰发版,采用实时调度器,往往发版的时候比较均衡,到晚高峰就出现节点间巨大差异,很多实时调度器,往往在出现巨大差异的时候会使用再平衡策略来重新调度,高峰时段对服务 POD 进行迁移,服务高可用角度来考虑是不现实的。显然实时调度是远远无法满足业务场景的。

我们的方案:高峰预测时调度

所以针对这种情况,需要预测性调度,根据以往高峰时候 CPU、IO、网络、日志等资源的使用量,通过对服务在节点上进行最优排列组合回归测算,得到各个服务和资源的权重系数,基于资源的权重打分扩展,也就是使用过去高峰数据来预测未来高峰节点服务使用量,从而干预调度节点打分结果。

问题2:调度维度多样化

随着业务越来越多样性,需要加入更多的调度维度,比如日志。由于采集器不可能无限速率采集日志且日志采集是基于节点维度。需要将平衡日志采集速率,不能各个节点差异过大。部分服务 CPU 使用量一般但是日志输出量很大;而日志并不属于默认调度器决策的一环,所以当这些日志量很大的服务多个服务的 pod 在同一个节点上的时候,该机器上的日志上报就有可能出现部分延迟。

我们的方案:补全调度决策因子

该问题显然需要我们对调度决策补全,我们扩展了预测调度打分策略,添加了日志的决策因子,将日志也作为节点的一种资源,并根据历史监控获取到服务对应的日志使用量来计算分数。

问题3:大批量服务扩缩导带来的调度时延

随着业务的复杂度进一步上升,在高峰时段出现,会有大量定时任务和集中大量弹性扩缩,大批量(上千 POD)同时调度导致调度时延的上涨,这两者对调度时间比较敏感,尤其对于定时任务来说,调度延时的上涨会被明显感知到。原因是 K8s 调度 pod 本身是对集群资源的分配,反应在调度流程上则是预选和打分阶段是顺序进行的;如此一来,当集群规模大到一定程度的时候,大批量更新就会出现可感知到的 pod 调度延迟。

我们的方案:拆分任务调度器,加大并发调度域、批量调度

解决吞吐能力低下的最直接的方法就是串行改并行,对于资源抢占场景,尽量细化资源域,资源域之间并行。给予以上策略,我们拆分出了独立的 job 调度器,同时使用了 serverless 作为 job 运行的底层资源。K8s serverless 为每一个 JOB POD,单独申请了独立的 POD 运行 sanbox,也就是任务调度器,是完整并行。以下对比图

原生调度器在晚高峰下节点 CPU 使用率

作业帮 Kubernetes 原生调度器优化实践

优化后调度器在晚高峰下节点 CPU 使用率

作业帮 Kubernetes 原生调度器优化实践

总结

work 节点资源、GPU 资源、serverless 资源这就是我们集群异构资源分属于这三类资源域,这三种资源上运行的服务存在天然的差异性,我们使用 forecast-scheduler、gpu-scheduler、job-schedule 三个调度器来管理这三种资源域上的 pod 的调度情况。

预测调度器管理大部分在线业务,其中扩展了资源维度,添加了预测打分策略。

GPU 调度器管理 GPU 资源机器的分配,运行在线推理和离线训练,两者的比例处于长期波动中,高峰期间离线训练缩容、在线推理扩容;非高峰期间离线训练扩容、在线推理缩容;同时处理一些离线图片处理任务来复用 GPU 机器上比较空闲的 CPU 等资源

Job 调度器负责管理我们定时任务的调度,定时任务量大且创建销毁频繁,资源使用非常碎片化,而且对实效性要求更高;所以我们将任务尽量调度到 Serverless 服务上,压缩集群中为了能容纳大量的任务而冗余的机器资源,提升资源利用率。

作业帮 Kubernetes 原生调度器优化实践

未来的演进探讨

更细粒度的资源域划分

将资源域划分至节点级别,节点级别加锁来进行。

资源抢占和重调度

正常场景下,当一个 pod 调度失败的时候,这个 pod 会保持在 pending 的状态,等待 pod 更新或者集群资源发生变化进行重新调度,但是 K8s 调度器依然存在一个抢占功能,可以使得高优先级 pod 在调度失败的时候,挤走某个节点上的部分低优先级 pod 以保证高优 pod 的正常,迄今为止我们并没有使用调度器的抢占能力,即使我们通过以上多种策略来加强调度的准确性,但依然无法避免部分场景下由于业务带来的不均衡情况,这种非正常场景中,重调度的能力就有了用武之地,也许重调度将会成为日后针对异常场景的一种自动修复的方式。

关于我们

更多关于云原生的案例和知识,可关注同名【腾讯云原生】公众号~

福利:

①公众号后台回复【手册】,可获得《腾讯云原生路线图手册》&《腾讯云原生最佳实践》~

②公众号后台回复【系列】,可获得《15个系列100+篇超实用云原生原创干货合集》,包含Kubernetes 降本增效、K8s 性能优化实践、最佳实践等系列。

③公众号后台回复【白皮书】,可获得《腾讯云容器安全白皮书》&《降本之源-云原生成本管理白皮书v1.0》

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
作业帮上万个 CronJob 和在线业务混部,如何解决弱隔离问题并进一步提升资源利用率?
作者吕亚霖,作业帮基础架构架构研发团队负责人。负责技术中台和基础架构工作。在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。别路,作业帮基础架构高级研发工程师,在作业帮期间,负责多云K8s集群建设、K8s组件研发、Linux内核优化调优相关工作。背景作业帮在云原生容器化改造的过程中,随着
TKE用户故事 | 作业帮检索服务基于Fluid的计算存储分离实践
作者吕亚霖,2019年加入作业帮,作业帮基础架构架构研发团队负责人,在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。张浩然,2019年加入作业帮,作业帮基础架构高级架构师,在作业帮期间,推动了作业帮云原生架构演进、负责多云k8s集群建设、k8s组件研发、linux内核优化调优、底层服务容器化相关工作。
TKE 用户故事 - 作业帮 PB 级低成本日志检索服务
作者吕亚霖,2019年加入作业帮,作业帮架构研发负责人,在作业帮期间主导了云原生架构演进、推动实施容器化改造、服务治理、GO微服务框架、DevOps的落地实践。莫仁鹏,2020年加入作业帮,作业帮高级架构师,在作业帮期间,推动了作业帮云原生架构演进,负责作业帮服务治理体系的设计和落地、服务感知体系建设以及自研mesh、MQproxy研发工作。摘要日志是服务
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这