Kubernetes 调度器实现初探

Stella981
• 阅读 850

Kubernetes 调度器

Kubernetes 是一个基于容器的分布式调度器,实现了自己的调度模块。
在Kubernetes集群中,调度器作为一个独立模块通过pod运行。从几个方面介绍Kubernetes调度器。

调度器工作方式

Kubernetes中的调度器,是作为单独组件运行,一般运行在Master中,和Master数量保持一致。通过Raft协议选出一个实例作为Leader工作,其他实例Backup。 当Master故障,其他实例之间继续通过Raft协议选出新的Master工作。
其工作模式如下:

  • 调度器内部维护一个调度的pods队列podQueue, 并监听APIServer。
  • 当我们创建Pod时,首先通过APIServer 往ETCD写入pod元数据。
  • 调度器通过Informer监听pods状态,当有新增pod时,将pod加入到podQueue中。
  • 调度器中的主进程,会不断的从podQueue取出的pod,并将pod进入调度分配节点环节
  • 调度环节分为两个步奏, Filter过滤满足条件的节点 、 Prioritize根据pod配置,例如资源使用率,亲和性等指标,给这些节点打分,最终选出分数最高的节点。
  • 分配节点成功, 调用apiServer的binding pod 接口, 将pod.Spec.NodeName设置为所分配的那个节点。
  • 节点上的kubelet同样监听ApiServer,如果发现有新的pod被调度到所在节点,调用本地的dockerDaemon 运行容器。
  • 假如调度器尝试调度Pod不成功,如果开启了优先级和抢占功能,会尝试做一次抢占,将节点中优先级较低的pod删掉,并将待调度的pod调度到节点上。 如果未开启,或者抢占失败,会记录日志,并将pod加入podQueue队尾。

Kubernetes 调度器实现初探

实现细节

kube-scheduling 是一个独立运行的组件,主要工作内容在 Run 函数 。 

这里面主要做几件事情:

  • 初始化一个Scheduler 实例 sched,传入各种Informer,为关心的资源变化建立监听并注册handler,例如维护podQuene
  • 注册events组件,设置日志
  • 注册http/https 监听,提供健康检查和metrics 请求
  • 运行主要的调度内容入口 sched.run()    。 如果设置 --leader-elect=true ,代表启动多个实例,通过Raft选主,实例只有当被选为master后运行主要工作函数sched.run

调度核心内容在 sched.run() 函数,它会启动一个go routine不断运行sched.scheduleOne, 每次运行代表一个调度周期。

func (sched *Scheduler) Run() {
    if !sched.config.WaitForCacheSync() {
        return
    }
    go wait.Until(sched.scheduleOne, 0, sched.config.StopEverything)
}

我们看下 sched.scheduleOne 主要做什么

func (sched *Scheduler) scheduleOne() {
  pod := sched.config.NextPod()
  .... // do some pre check
  scheduleResult, err := sched.schedule(pod)
    if err != nil {
        if fitError, ok := err.(*core.FitError); ok {
            if !util.PodPriorityEnabled() || sched.config.DisablePreemption {
                ..... // do some log
            } else {
                sched.preempt(pod, fitError)
            }
        }
    }
    ... 
    // Assume volumes first before assuming the pod.
    allBound, err := sched.assumeVolumes(assumedPod, scheduleResult.SuggestedHost)
    ...     
    fo func() {
        // Bind volumes first before Pod
        if !allBound {
            err := sched.bindVolumes(assumedPod)
            if err != nil {
                klog.Errorf("error binding volumes: %v", err)
                metrics.PodScheduleErrors.Inc()
                return
            }
        }
      err := sched.bind(assumedPod, &v1.Binding{
            ObjectMeta: metav1.ObjectMeta{Namespace: assumedPod.Namespace, Name: assumedPod.Name, UID: assumedPod.UID},
            Target: v1.ObjectReference{
                Kind: "Node",
                Name: scheduleResult.SuggestedHost,
            },
        })
    }
}

sched.scheduleOne 中,主要会做几件事情

  • 通过sched.config.NextPod(), 从podQuene中取出pod
  • 运行sched.schedule,尝试进行一次调度。
  • 假如调度失败,如果开启了抢占功能,会调用sched.preempt 尝试进行抢占,驱逐一些pod,为被调度的pod预留空间,在下一次调度中生效。
  • 如果调度成功,执行bind接口。在执行bind之前会为pod volume中声明的的PVC 做provision。

sched.schedule 是主要的pod调度逻辑

func (g *genericScheduler) Schedule(pod *v1.Pod, nodeLister algorithm.NodeLister) (result ScheduleResult, err error) {
    // Get node list
    nodes, err := nodeLister.List()
    // Filter
    filteredNodes, failedPredicateMap, err := g.findNodesThatFit(pod, nodes)
    if err != nil {
        return result, err
    }
    // Priority
    priorityList, err := PrioritizeNodes(pod, g.cachedNodeInfoMap, metaPrioritiesInterface, g.prioritizers, filteredNodes, g.extenders)
    if err != nil {
        return result, err
    }
    
    // SelectHost
    host, err := g.selectHost(priorityList)
    return ScheduleResult{
        SuggestedHost:  host,
        EvaluatedNodes: len(filteredNodes) + len(failedPredicateMap),
        FeasibleNodes:  len(filteredNodes),
    }, err
}

调度主要分为三个步奏:

  • Filters: 过滤条件不满足的节点
  • PrioritizeNodes: 在条件满足的节点中做Scoring,获取一个最终打分列表priorityList
  • selectHost: 在priorityList中选取分数最高的一组节点,从中根据round-robin 方式选取一个节点。

Kubernetes 调度器实现初探

接下来我们继续拆解, 分别看下这三个步奏会怎么做

Filters

Filters 相对比较容易,调度器默认注册了一系列的predicates方法, 调度过程为并发调用每个节点的predicates 方法。最终得到一个node list,包含符合条件的节点对象。

func (g *genericScheduler) findNodesThatFit(pod *v1.Pod, nodes []*v1.Node) ([]*v1.Node, FailedPredicateMap, error) {
    if len(g.predicates) == 0 {
        filtered = nodes
    } else {
        allNodes := int32(g.cache.NodeTree().NumNodes())
        numNodesToFind := g.numFeasibleNodesToFind(allNodes)

        checkNode := func(i int) {
            nodeName := g.cache.NodeTree().Next()
      // 此处会调用这个节点的所有predicates 方法
            fits, failedPredicates, err := podFitsOnNode(
                pod,
                meta,
                g.cachedNodeInfoMap[nodeName],
                g.predicates,
                g.schedulingQueue,
                g.alwaysCheckAllPredicates,
            )

            if fits {
                length := atomic.AddInt32(&filteredLen, 1)
                if length > numNodesToFind {
            // 如果当前符合条件的节点数已经足够,会停止计算。
                    cancel()
                    atomic.AddInt32(&filteredLen, -1)
                } else {
                    filtered[length-1] = g.cachedNodeInfoMap[nodeName].Node()
                }
            }
        }
    // 并发调用checkNode 方法
        workqueue.ParallelizeUntil(ctx, 16, int(allNodes), checkNode)
        filtered = filtered[:filteredLen]
    }
    return filtered, failedPredicateMap, nil
}

值得注意的是, 1.13中引入了FeasibleNodes 机制,为了提高大规模集群的调度性能。允许我们通过bad-percentage-of-nodes-to-score 参数, 设置filter的计算比例(默认50%), 当节点数大于100个, 在 filters的过程,只要满足条件的节点数超过这个比例,就会停止filter过程,而不是计算全部节点。
举个例子,当节点数为1000, 我们设置的计算比例为30%,那么调度器认为filter过程只需要找到满足条件的300个节点,filter过程中当满足条件的节点数达到300个,filter过程结束。 这样filter不用计算全部的节点,同样也会降低Prioritize  的计算数量。 但是带来的影响是pod有可能没有被调度到最合适的节点。

Prioritize

Prioritize 的目的是帮助pod,为每个符合条件的节点打分,帮助pod找到最合适的节点。同样调度器默认注册了一系列Prioritize方法。这是Prioritize 对象的数据结构

// PriorityConfig is a config used for a priority function.
type PriorityConfig struct {
    Name   string
    Map    PriorityMapFunction
    Reduce PriorityReduceFunction
    // TODO: Remove it after migrating all functions to
    // Map-Reduce pattern.
    Function PriorityFunction
    Weight   int
}

每个PriorityConfig 代表一个评分的指标,会考虑服务的均衡性,节点的资源分配等因素。 一个 PriorityConfig 的主要Scoring过程分为 Map和Reduce,

  • Map 过程计算每个节点的分数值
  • Reduce 过程会将当前PriorityConfig的所有节点的打分结果再做一次处理。

所有PriorityConfig 计算完毕后,将每个PriorityConfig的数值乘以对应的权重,并按照节点再做一次聚合。

    workqueue.ParallelizeUntil(context.TODO(), 16, len(nodes), func(index int) {
        nodeInfo := nodeNameToInfo[nodes[index].Name]
        for i := range priorityConfigs {
            var err error
            results[i][index], err = priorityConfigs[i].Map(pod, meta, nodeInfo)
        }
    })

    for i := range priorityConfigs {
        wg.Add(1)
        go func(index int) {
            defer wg.Done()
            if err := priorityConfigs[index].Reduce(pod, meta, nodeNameToInfo, results[index]);
        }(i)
    }
    wg.Wait()

    // Summarize all scores.
    result := make(schedulerapi.HostPriorityList, 0, len(nodes))

    for i := range nodes {
        result = append(result, schedulerapi.HostPriority{Host: nodes[i].Name, Score: 0})
        for j := range priorityConfigs {
            result[i].Score += results[j][i].Score * priorityConfigs[j].Weight
        }
    }

此外Filter和Prioritize 都支持extener scheduler 的调用,本文不做过多阐述。

现状

目前kubernetes调度器的调度方式是Pod-by-Pod,也是当前调度器不足的地方。主要瓶颈如下

  • kubernets目前调度的方式,每个pod会对所有节点都计算一遍,当集群规模非常大,节点数很多时,pod的调度时间会非常慢。 这也是percentage-of-nodes-to-score 尝试要解决的问题
  • pod-by-pod的调度方式不适合一些机器学习场景。 kubernetes早期设计主要为在线任务服务,在一些离线任务场景,比如分布式机器学习中,我们需要一种新的算法gang scheduler,pod也许对调度的即时性要求没有那么高,但是提交任务后,只有当一个批量计算任务的所有workers都运行起来时,才会开始计算任务。 pod-by-pod 方式在这个场景下,当资源不足时非常容易引起资源死锁。 
  • 当前调度器的扩展性不是十分好,特定场景的调度流程都需要通过硬编码实现在主流程中,比如我们看到的bindVolume部分, 同样也导致Gang Scheduler 无法在当前调度器框架下通过原生方式实现。

Kubernetes调度器的发展

社区调度器的发展,也是为了解决这些问题

接下来,我们会分析一个具体的调度器方法实现,帮助理解拆解调度器的过程。 并且关注分析调度器的社区动态。

原文链接
本文为云栖社区原创内容,未经允许不得转载。

点赞
收藏
评论区
推荐文章
Prodan Labs Prodan Labs
3年前
Kubernetes自定义调度器 — 初识调度框架
Kubernetes已经成为容器编排(Orchestration)平台的事实标准,它为容器化应用提供了简单且高效部署的方式、大规模可伸缩、资源调度等生命周期管理功能。kubescheduler作为kubernetes的核心组件,它负责整个集群资源的调度功能,根据特定的调度算法或调度策略,将Pod调度到最优的Node节点,使集群的资源得到合理且充分的利用。
Prodan Labs Prodan Labs
3年前
Kubernetes自定义调度器 — 初窥门径
通过上一篇文章对schedulerframework调度框架已经有了大致了解,根据我们的实际生产的一些问题(如计算服务没有被调度到实际CPU最优的节点)和需求,来实现一个简单的基于CPU指标的自定义调度器。自定义调度器通过kubernetes资源指标服务metricsserver来获取各节点的当前的资源情况,并进行打分,然后把Pod调度到分数最高的节
DevOpSec DevOpSec
2年前
kubernetes之pod拓扑分布约束
kubernetes之pod拓扑分布约束在日常使用kubernetes的过程中中,很多时候我们并没有过多的关心pod的到底调度在哪里,只是通过多副本的测试,来提高的我们的业务的可用性,但是当多个
DevOpSec DevOpSec
2年前
kubernetes之pod重调度-descheduler
kubernetes之pod重调度descheduler1\.kubernetessigs/descheduler简介
Stella981 Stella981
3年前
Rancher 2.4.3
一、概述对于生产环境,需以高可用的配置安装Rancher,确保用户始终可以访问RancherServer。当安装在Kubernetes集群中时,Rancher将与集群的etcd集成,并利用Kubernetes调度实现高可用。为确保高可用,本文所部署的Kubernetes集群将专用于运行Rancher,Rancher运行
Stella981 Stella981
3年前
Nvidia GPU如何在Kubernetes 里工作
本文介绍NvidiaGPU设备如何在Kubernetes中管理调度。整个工作流程分为以下两个方面:如何在容器中使用GPUKubernetes如何调度GPU如何在容器中使用GPU想要在容器中的应用可以操作GPU,需要实两个目标1.容器中可以查看GPU设备2.容器中运行的应用,可以通过Nvidi
Stella981 Stella981
3年前
Dubbo 3.0 前瞻之对接 Kubernetes 原生服务
Kubernetes是当前全球最流行的容器服务平台,在Kubernetes集群中,Dubbo应用的部署方式往往需要借助第三方注册中心实现服务发现。Dubbo与Kubernetes的调度体系的结合,可以让原本需要管理两套平台的运维成本大大减低,而且Dubbo适配了Kubernetes原生服务也可以让框架本身更加融入云原生体系。基于D
Stella981 Stella981
3年前
Kubernetes Pod OOM 排查日记
一、发现问题在一次系统上线后,我们发现某几个节点在长时间运行后会出现内存持续飙升的问题,导致的结果就是Kubernetes集群的这个节点会把所在的Pod进行驱逐OOM;如果调度到同样问题的节点上,也会出现Pod一直起不来的问题。我们尝试了杀死Pod后手动调度的办法(label),当然也可以排除调度节点。但是在一段时间后还会复现,我们通过监控
Crane-scheduler:基于真实负载进行调度
作者邱天,腾讯云高级工程师,负责腾讯云TKE动态调度器与重调度器产品。背景原生kubernetes调度器只能基于资源的resourcerequest进行调度,然而Pod的真实资源使用率,往往与其所申请资源的request/limit差异很大,这直接导致了集群负载不均的问题:1.集群中的部分节点,资源的真实使用率远低于resourc
Crane-scheduler:基于真实负载进行调度
作者邱天,腾讯云高级工程师,负责腾讯云TKE动态调度器与重调度器产品。背景原生kubernetes调度器只能基于资源的resourcerequest进行调度,然而Pod的真实资源使用率,往往与其所申请资源的request/limit差异很大,这直接导致了集群负载不均的问题:1.集群中的部分节点,资源的真实使用率远低于resourcerequest,却没有被调度更多的Pod,这造成了比较大的资源浪费;2.而集群中的另外一些节点,其资源的真实使用率事实上已经过载,却无法为调