kubernetes之pod拓扑分布约束

DevOpSec
• 阅读 548

kubernetes之pod拓扑分布约束

在日常使用 kubernetes 的过程中中,很多时候我们并没有过多的关心 pod 的到底调度在哪里,只是通过多副本的测试,来提高的我们的业务的可用性,但是当多个相同业务 pod 在分布在相同节点时,一旦节点意外宕机,将会严重影响我们的业务的可用性,鉴于此,kubernetes 中引入了新的 pod 调度策略-topologySpreadConstraints,翻译为拓扑分布约束,今天就让我们揭开其神秘面纱,原来 pod 还可以这么玩。

关键字:topologySpreadConstraints pod拓扑分布约束 kubernetes

pod 拓扑分布约束简介

拓扑分布约束(Topology Spread Constraints)可以控制 Pods 在集群内故障域 之间的分布,例如区域(Region)、可用区(Zone)、节点和其他用户自定义拓扑域。 这样做有助于实现高可用并提升资源利用率。
此项功能在 1.18中将其提升为Beta,1.19 中为 stable 状态,可以在生产环境中使用。

节点的故障域标识

拓扑分布约束依赖于节点标签来标识每个节点所在的拓扑域。 例如,某节点可能具有标签:node=node1,zone=us-east-1a,region=us-east-1

假设你拥有具有以下标签的一个 4 节点集群:

NAME    STATUS   ROLES    AGE     VERSION   LABELS
node1   Ready    <none>   4m26s   v1.16.0   node=node1,zone=zoneA
node2   Ready    <none>   3m58s   v1.16.0   node=node2,zone=zoneA
node3   Ready    <none>   3m17s   v1.16.0   node=node3,zone=zoneB
node4   Ready    <none>   2m43s   v1.16.0   node=node4,zone=zoneB

在逻辑上看,我们的节点的结构图如下: kubernetes之pod拓扑分布约束

由上图可知,逻辑域有两个层次,一是 node 层面,二是 zone 层面,我们可以灵活配置自己的故障域,使我们的业务有更高的可用性。

pod 拓扑分布约束实践

正如我们日常写 yaml 一样,配置 topologySpreadConstraints,同样只需要在 yaml 中定义即可,路径为: pod.spec.topologySpreadConstraints kubernetes之pod拓扑分布约束

示例:

apiVersion: v1
kind: Pod
metadata:
  name: mypod
spec:
  topologySpreadConstraints:
    - maxSkew: <integer>
      topologyKey: <string>
      whenUnsatisfiable: <string>
      labelSelector: <object>

你可以定义一个或多个 topologySpreadConstraint 来指示 kube-scheduler 如何根据与现有的 Pod 的关联关系将每个传入的 Pod 部署到集群中。
字段包括:

  • maxSkew 描述 Pod 分布不均的程度。
    这是给定拓扑类型中任意两个拓扑域中 匹配的 pod 之间的最大允许差值。它必须大于零。取决于 whenUnsatisfiable 的 取值,其语义会有不同。

    • 当 whenUnsatisfiable 等于 “DoNotSchedule” 时,maxSkew 是目标拓扑域 中匹配的 Pod 数与全局最小值之间可存在的差异。
    • 当 whenUnsatisfiable 等于 “ScheduleAnyway” 时,调度器会更为偏向能够降低 偏差值的拓扑域。
  • topologyKey 是节点标签的键。
    如果两个节点使用此键标记并且具有相同的标签值, 则调度器会将这两个节点视为处于同一拓扑域中。调度器试图在每个拓扑域中放置数量 均衡的 Pod。

  • whenUnsatisfiable 指示如果 Pod 不满足分布约束时如何处理:

    • DoNotSchedule(默认)告诉调度器不要调度。
    • ScheduleAnyway 告诉调度器仍然继续调度,只是根据如何能将偏差最小化来对 节点进行排序。
  • labelSelector 用于查找匹配的 pod。 匹配此标签的 Pod 将被统计,以确定相应 拓扑域中 Pod 的数量。 有关详细信息,请参考标签选择算符。

你可以执行 kubectl explain Pod.spec.topologySpreadConstraints 命令以了解关于 topologySpreadConstraints 的更多信息。

业务应用实践

  1. 单个 TopologySpreadConstraint
    假设你拥有一个 4 节点集群,其中标记为 foo:bar 的 3 个 Pod 分别位于 node1、node2 和 node3 中:
    示意图: kubernetes之pod拓扑分布约束

如果希望新来的 Pod 均匀分布在现有的可用区域,可进行如下配置:

##  示例1-yaml
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1
  • topologyKey: zone 意味着均匀分布将只应用于存在标签键值对为 “zone:” 的节点。
  • whenUnsatisfiable: DoNotSchedule 告诉调度器如果新的 Pod 不满足约束,则让它保持悬决状态

如果调度器将新的 Pod 放入 “zoneA”,Pods 分布将变为 [3, 1],因此实际的偏差 为(3 - 1)= 2 。这违反了 maxSkew: 1 的约定。此示例中,新 Pod 只能放置在 “zoneB” 上: kubernetes之pod拓扑分布约束

或者

kubernetes之pod拓扑分布约束

你可以调整 Pod 的配置以满足各种要求:

  • 将 maxSkew 更改为更大的值,比如 “2”,这样新的 Pod 也可以放在 “zoneA” 上。
  • 将 topologyKey 更改为 “node”,以便将 Pod 均匀分布在节点上而不是区域中。 在上面的例子中,如果 maxSkew 保持为 “1”,那么传入的 Pod 只能放在 “node4” 上。
  • 将 whenUnsatisfiable: DoNotSchedule 更改为 whenUnsatisfiable: ScheduleAnyway, 以确保新的 Pod 始终可以被调度(假设满足其他的调度 API)。 但是,最好将其放置在匹配 Pod 数量较少的拓扑域中。 (请注意,这一优先判定会与其他内部调度优先级(如资源使用率等)排序准则一起进行标准化。)
  1. 多个 TopologySpreadConstraints
    下面的例子建立在前面例子的基础上。假设你拥有一个 4 节点集群,其中 3 个标记为 foo:bar 的 Pod 分别位于 node1、node2 和 node3 上:
    示意图:
    kubernetes之pod拓扑分布约束

可以使用 2 个 TopologySpreadConstraint 来控制 Pod 在 区域和节点两个维度上的分布:

## 示例2-yaml
kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  - maxSkew: 1
    topologyKey: node
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1

在这种情况下,为了匹配第一个约束,新的 Pod 只能放置在 “zoneB” 中;而在第二个约束中, 新的 Pod 只能放置在 “node4” 上。最后两个约束的结果加在一起,唯一可行的选择是放置 在 “node4” 上。

多个约束之间可能存在冲突。假设有一个跨越 2 个区域的 3 节点集群: kubernetes之pod拓扑分布约束 如果对集群应用示例2-yaml配置,会发现 “mypod” 处于 Pending 状态。 这是因为:为了满足第一个约束,“mypod” 只能放在 “zoneB” 中,而第二个约束要求 “mypod” 只能放在 “node2” 上。Pod 调度无法满足两种约束。

为了克服这种情况,你可以增加 maxSkew 或修改其中一个约束,让其使用 whenUnsatisfiable: ScheduleAnyway

约定

  • 只有与新的 Pod 具有相同命名空间的 Pod 才能作为匹配候选者。
  • 没有 topologySpreadConstraints[*].topologyKey 的节点将被忽略。这意味着:
    1. 位于这些节点上的 Pod 不影响 maxSkew 的计算。 在上面的例子中,假设 “node1” 没有标签 “zone”,那么 2 个 Pod 将被忽略, 因此传入的 Pod 将被调度到 “zoneA” 中。 2.新的 Pod 没有机会被调度到这类节点上。 在上面的例子中,假设一个带有标签 {zone-typo: zoneC} 的 “node5” 加入到集群, 它将由于没有标签键 “zone” 而被忽略。
  • 注意,如果新 Pod 的 topologySpreadConstraints[_].labelSelector 与自身的 标签不匹配,将会发生什么。 在上面的例子中,如果移除新 Pod 上的标签,Pod 仍然可以调度到 “zoneB”,因为约束仍然满足。 然而,在调度之后,集群的不平衡程度保持不变。zoneA 仍然有 2 个带有 {foo:bar} 标签的 Pod, zoneB 有 1 个带有 {foo:bar} 标签的 Pod。 因此,如果这不是你所期望的,建议工作负载的 topologySpreadConstraints[_].labelSelector 与其自身的标签匹配。
  • 如果新 Pod 定义了 spec.nodeSelector 或 spec.affinity.nodeAffinity,则 不匹配的节点会被忽略。

假设你有一个跨越 zoneA 到 zoneC 的 5 节点集群 kubernetes之pod拓扑分布约束 而且你知道 “zoneC” 必须被排除在外。在这种情况下,可以按如下方式编写 yaml, 以便将 “mypod” 放置在 “zoneB” 上,而不是 “zoneC” 上。同样,spec.nodeSelector 也要一样处理。

kind: Pod
apiVersion: v1
metadata:
  name: mypod
  labels:
    foo: bar
spec:
  topologySpreadConstraints:
  - maxSkew: 1
    topologyKey: zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        foo: bar
  affinity:
    nodeAffinity:
      requiredDuringSchengIgnoredDuringExecution:
        nodeSelectorTerms:
        - matchExpressions:
          - key: zone
            operator: NotIn
            values:
            - zoneC
  containers:
  - name: pause
    image: k8s.gcr.io/pause:3.1

集群基本的Pod 拓扑分布约束

为集群设置默认的拓扑分布约束也是可能的。默认拓扑分布约束在且仅在以下条件满足 时才会应用到 Pod 上:

  • Pod 没有在其 .spec.topologySpreadConstraints 设置任何约束;
  • Pod 隶属于某个服务、副本控制器、ReplicaSet 或 StatefulSet;

你可以在 调度方案(Schedulngg Profile) 中将默认约束作为 PodTopologySpread 插件参数的一部分来设置。 约束的设置采用如前所述的 API,只是 labelSelector 必须为空。 选择算符是根据 Pod 所属的服务、副本控制器、ReplicaSet 或 StatefulSet 来设置的。
示例配置:

apiVersion: kubescheduler.config.k8s.io/v1beta1
kind: KubeSchedulerConfiguration

profiles:
  - pluginConfig:
      - name: PodTopologySpread
        args:
          defaultConstraints:
            - maxSkew: 1
              topologyKey: topology.kubernetes.io/zone
              whenUnsatisfiable: ScheduleAnyway
          defaultingType: List

与 PodAffinity/PodAntiAffinity 相比较

在 Kubernetes 中,与“亲和性”相关的指令控制 Pod 的调度方式(更密集或更分散)。

  • 对于 PodAffinity,你可以尝试将任意数量的 Pod 集中到符合条件的拓扑域中。
  • 对于 PodAntiAffinity,只能将一个 Pod 调度到某个拓扑域中。

要实现更细粒度的控制,你可以设置拓扑分布约束来将 Pod 分布到不同的拓扑域下, 从而实现高可用性或节省成本。这也有助于工作负载的滚动更新和平稳地扩展副本规模。

高阶用法

  1. 结合NodeSelector/NodeAffinity一起使用

在pod的拓扑分布约束配置中,可以看到我们只有topologyKey的配置选项,并没有任何关于topologyValues的配置字段,也就是并没有规定pod具体安排在哪些拓扑域,默认情况下,它将搜索所有节点并按"topologyKey"对它们进行分组。有时这可能不是我们想要的结果。例如,假设有一个集群,其节点分别用"env = prod”,“env = staging"和"env = qa"标记,现在您想将Pod均匀地跨区域放置到"qa"环境中,能办到么?

答案是肯定的。您可以利用NodeSelector或NodeAffinity API规范。在幕后,PodTopologySpread功能将兑现这一点,并计算满足选择器的节点之间的传播约束。 示意图:
kubernetes之pod拓扑分布约束

如上所示,您可以指定spec.affinity.nodeAffinity将搜索范围限制为qa环境,并且在该范围内,会将Pod调度到一个满足topologySpreadConstraints的区域。在这种情况下,它是"zone2”。

  1. 高阶多拓扑分布约束

了解一个TopologySpreadConstraint的工作原理很直观。多个TopologySpreadConstraints是什么情况?在内部,每个TopologySpreadConstraint都是独立计算的,结果集将合并以生成最终的结果集-即合适的节点。

在以下示例中,我们希望同时将Pod调度到具有2个需求的集群中:

  • Pod跨区域均匀放置
  • Pod跨节点均匀放置

示意图: kubernetes之pod拓扑分布约束

对于第一个约束,zone1中有3个Pod,zone2中有2个Pod,因此只能将传入的Pod放入zone2中,以满足"maxSkew = 1"约束。换句话说,结果集是nodeX和nodeY。

对于第二个约束,nodeB和nodeX中的Pod过多,因此只能将传入的Pod放入nodeA和nodeY。

现在我们可以得出结论,唯一合格的节点是nodeY-从集合{nodeX,nodeY}(来自第一个约束)和{nodeA,nodeY}(来自第二个约束)的交集中得出。

多个TopologySpreadConstraints功能强大,但是一定要了解与前面的"NodeSelector/NodeAffinity"示例的区别:一个是独立计算结果集,然后将其互连;另一种是根据节点约束的过滤结果来计算topologySpreadConstraints。

注意:如果将两个TopologySpreadConstraints应用于同一{topologyKey,whenUnsatisfiable}元组,则Pod的创建将被阻止,并返回验证错误。

本文转自 https://aiopsclub.com/kubernetes/k8s_topologyspreadconstraints/,如有侵权,请联系删除。

点赞
收藏
评论区
推荐文章
Prodan Labs Prodan Labs
3年前
Kubernetes Pod 自动扩容 — HPA
Kubernetes增强了应用服务的横向扩容能力,在应对线上应用服务的资源使用率在高峰和低谷的时候,我们需要能够自动去感知应用的负载变化去调整Pod的副本数量,削峰填谷,提高集群的整体资源利用率和应用的服务质量。为此,Kubernetes1.2版本中引入HorizontalPodAutoscaling(HPA),它与kubectlsc
DevOpSec DevOpSec
2年前
kubernetes之pod重调度-descheduler
kubernetes之pod重调度descheduler1\.kubernetessigs/descheduler简介
Stella981 Stella981
3年前
K8s创建pod yaml文件详解
kubernetes创建pod的yaml文件,参数说明apiVersion:v1指定api版本,此值必须在kubectlapiversion中kind:Pod指定创建资源的角色/类型metadata:资源的元数据/属性name:web04pod资源的名字,在同一个namespace中必须唯一lab
Wesley13 Wesley13
3年前
K8S基础概念
一、核心概念1、NodeNode作为集群中的工作节点,运行真正的应用程序,在Node上Kubernetes管理的最小运行单元是Pod。Node上运行着Kubernetes的Kubelet、kubeproxy服务进程,这些服务进程负责Pod的创建、启动、监控、重启、销毁、以及实现软件模式的负载均衡。Node包含
Stella981 Stella981
3年前
Kubernetes Pod 故障归类与排查方法
Pod概念Pod是kubernetes集群中最小的部署和管理的基本单元,协同寻址,协同调度。Pod是一个或多个容器的集合,是一个或一组服务(进程)的抽象集合。Pod中可以共享网络和存储(可以简单理解为一个逻辑上的虚拟机,但并不是虚拟机)。Pod被创建后用一个UID来唯一标
Stella981 Stella981
3年前
Dockerfile 设置语言包
最近使用Hangfire的Dashboard, 在本地调试时,显示的是中文,但是通过docker在kubernetes上运行时,就显示成英文了,怀疑是docker运行环境中没有设计默认的语言包:我们通过命令kubectlgetpodsowide查看pod所在服务器ip在该服务器中通过命令:dockerps 查看dock
Wesley13 Wesley13
3年前
K8S故障排查指南
问题产生在使用Kubernetes时,有时会遇到Pod状态一直处理Terminating。Pod一直没有正常退出,一般情况会使用命令kubectldeletepodspodnameforcegraceperiod0强制删除。如果按照上面命令强制删除Pod,有一定概率会报Orphanedp
Stella981 Stella981
3年前
Kubernetes 调度器实现初探
Kubernetes调度器Kubernetes是一个基于容器的分布式调度器,实现了自己的调度模块。在Kubernetes集群中,调度器作为一个独立模块通过pod运行。从几个方面介绍Kubernetes调度器。调度器工作方式Kubernetes中的调度器,是作为单独组件运行,一般运行在Master中,和Master数量保持
Stella981 Stella981
3年前
Kubernetes 副本机制篇
前言在上文KubernetesPod操作篇(https://my.oschina.net/OutOfMemory/blog/3145092)介绍了kubernetes的核心组件Pod,本文继续介绍kubernetes的副本机制,正是因为副本机制你的部署能自动保待运行,并且保持健康,无须任何手动干预。探针kubernetes可以通
Stella981 Stella981
3年前
Kubernetes Pod OOM 排查日记
一、发现问题在一次系统上线后,我们发现某几个节点在长时间运行后会出现内存持续飙升的问题,导致的结果就是Kubernetes集群的这个节点会把所在的Pod进行驱逐OOM;如果调度到同样问题的节点上,也会出现Pod一直起不来的问题。我们尝试了杀死Pod后手动调度的办法(label),当然也可以排除调度节点。但是在一段时间后还会复现,我们通过监控
DevOpSec
DevOpSec
Lv1
懂开发的运维,懂安全的运维。公众号:DevOpSec
文章
57
粉丝
6
获赞
26