OpenCV3与深度学习实例:Dlib+VGG Face实现两张脸部图像相似度比较

Stella981
• 阅读 720

实现思路:

1、使用Dlib识别并提取脸部图像

2、使用VGG Face模型提取脸部特征

3、使用余弦相似度算法比较两张脸部图像的特征

代码如下:

import time
import numpy as np
import sklearn
import sklearn.metrics.pairwise as pw
import cv2
import dlib

prototxt = 'datas/models/caffe/vgg-face/vgg_face_caffe/vgg_face_caffe/VGG_FACE_deploy.prototxt'
caffemodel = 'datas/models/caffe/vgg-face/vgg_face_caffe/vgg_face_caffe/VGG_FACE.caffemodel'
dlib_model = 'datas/models/dlib/shape_predictor_68_face_landmarks.dat'
detector = dlib.get_frontal_face_detector()
predictor = dlib.shape_predictor(dlib_model)
net = cv2.dnn.readNetFromCaffe(prototxt, caffemodel)

faces1 = get_faces('datas/images/face-tests/fanbb/f16.jpg')
faces2 = get_faces('datas/images/faces/fanbb.jpg')
for i,face in enumerate(faces1):
    cv2.imshow('face1_%d' % i,face)

for i,face in enumerate(faces2):
    cv2.imshow('face2_%d' % i,face)

face_1 = faces1[0]
face_2 = faces2[0]

result = compare_faces(face_1,face_2)
print('prob of similarity:',result)
cv2.waitKey()
cv2.destroyAllWindows()

OpenCV3与深度学习实例:Dlib+VGG Face实现两张脸部图像相似度比较 OpenCV3与深度学习实例:Dlib+VGG Face实现两张脸部图像相似度比较 OpenCV3与深度学习实例:Dlib+VGG Face实现两张脸部图像相似度比较 OpenCV3与深度学习实例:Dlib+VGG Face实现两张脸部图像相似度比较

第一张图像与第二张图像人脸的相似度为:0.8697828

第一张图像与第三张图像人脸的相似度为:0.998867

第一张图像与第四张图像人脸的相似度为:0.00211427

以上测试图像来源网络,仅作程序演示使用,如有侵权,请告知删除。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
java将前端的json数组字符串转换为列表
记录下在前端通过ajax提交了一个json数组的字符串,在后端如何转换为列表。前端数据转化与请求varcontracts{id:'1',name:'yanggb合同1'},{id:'2',name:'yanggb合同2'},{id:'3',name:'yang
待兔 待兔
3个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Java修道之路,问鼎巅峰,我辈代码修仙法力齐天
<center<fontcolor00FF7Fsize5face"黑体"代码尽头谁为峰,一见秃头道成空。</font<center<fontcolor00FF00size5face"黑体"编程修真路破折,一步一劫渡飞升。</font众所周知,编程修真有八大境界:1.Javase练气筑基2.数据库结丹3.web前端元婴4.Jav
Stella981 Stella981
3年前
Android So动态加载 优雅实现与原理分析
背景:漫品Android客户端集成适配转换功能(基于目标识别(So库35M)和人脸识别库(5M)),导致apk体积50M左右,为优化客户端体验,决定实现So文件动态加载.!(https://oscimg.oschina.net/oscnet/00d1ff90e4b34869664fef59e3ec3fdd20b.png)点击上方“蓝字”关注我
四儿 四儿
1年前
人脸识别技术的精度提高及其应用
人脸识别技术是一种重要的生物识别技术,广泛应用于安全防护、金融支付、门禁系统等领域。为了提高人脸识别技术的精度,研究人员采用了多种方法,如深度学习、特征提取、图像处理等。其中,深度学习的方法在人脸识别领域取得了很好的效果。通过训练大量的图像数据,深度学习模
四儿 四儿
1年前
面部表情识别的技术实现
面部表情识别是一项复杂的技术,需要综合运用计算机视觉、机器学习、深度学习等多种技术。本文将介绍面部表情识别的技术实现过程,包括图像采集、预处理、特征提取、分类识别等方面。首先,在进行面部表情识别之前,需要采集面部图像作为输入数据。为了获得高质量的图像,需要