MySQL进阶篇(03):合理的使用索引结构和查询

Wesley13
• 阅读 565

本文源码:GitHub·点这里 || GitEE·点这里

一、高性能索引

1、查询性能问题

在MySQL使用的过程中,所谓的性能问题,在大部分的场景下都是指查询的性能,导致查询缓慢的根本原因是数据量的不断变大,解决查询性能的最常见手段是:针对查询的业务场景,设计合理的索引结构。

2、索引使用原则

索引的使用并不是越多越好,而是针对业务下的查询场景,不断的改进和优化,例如电商系统中用户订单的场景,假设存在如下表结构:

CREATE TABLE `ds_user` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键id',
  `user_name` varchar(20) DEFAULT NULL,
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='用户表';

CREATE TABLE `ds_order` (
  `id` int(11) NOT NULL AUTO_INCREMENT COMMENT '主键id',
  `user_id` int(11) NOT NULL COMMENT '用户ID',
  `order_no` varchar(60) NOT NULL COMMENT '订单号',
  `product_name` varchar(50) DEFAULT NULL COMMENT '产品名称',
  `number` int(11) DEFAULT '1' COMMENT '个数',
  `unit_price` decimal(10,2) DEFAULT '0.00' COMMENT '单价',
  `total_price` decimal(10,2) DEFAULT '0.00' COMMENT '总价',
  `order_state` int(2) DEFAULT '1' COMMENT '1待支付,2已支付,3已发货,4已签收',
  `order_remark` varchar(50) DEFAULT NULL COMMENT '订单备注',
  `create_time` datetime DEFAULT NULL COMMENT '创建时间',
  PRIMARY KEY (`id`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8 COMMENT='订单表';

用户和订单管理表,在电商的业务中很常见,可以通过对该业务分析,看看常用的索引结构:

用户方:

  • 基于用户的查询,多数是基于用户ID(user_id);
  • 基于订单号(order_no),查看物流的信息;

运营方:

  • 基于时间段的流水明细(create_time)或排序;
  • 基于订单状态的筛选(order_state)和统计;
  • 基于产品(product_name)的数据统计分析;

这样一个流程分析走下来,即可以在开发初期,确定哪些结构是查询必须用到的,预先做好索引结构,避免数据量庞大到影响性能时再去考虑使用索引。

有些时候会考虑放弃一些查询条件,例如基于产品名称的数据统计,走定时任务的方式,用来缓解表的查询压力,处理的方式是多样的。

优秀的索引设计,都是建立在对业务数据的理解上,考虑业务数据的查询方式,提高查询效率。

二、索引创建

1、单列索引

单列索引,即索引建立在表的一个字段上,一个表可以有多个单列索引,使用起来相对比较简单:

CREATE INDEX user_id_index ON ds_order(user_id) USING BTREE;

主键索引,或者上述的user_id_index都是单列索引。

业务场景:基于用户自己对订单查询,和管理系统,订单和用户的关联查询,所以订单表的user_id需要一个索引。

2、组合索引

组合索引包含两个或两个以上的列,组合索引相比单列索引复杂很多,如何建立组合索引,和业务关联度非常高,在使用组合索引时,还需要考虑查询条件的顺序。

CREATE INDEX state_create_time_index ON `ds_order`(`create_time`,`order_state`);

如上就是组合索引,实际包含的是2个索引 (create_time) (create_time,order_state),这样查询就涉及到最左前缀的原则,必须按照顺序来查询,这里下面详说。

业务场景:首先单说这里组合索引,在业务开发中,常见订单状态的统计,基于统计结果做运营分析,另外就是在运营系统中,基于创建时间段的筛选条件是默认存在的,避免全部数据实时扫描;一些其他的常见查询也都是条件加时间段的查询模式。

3、前缀索引

如果需要加索引的列是很长的字符串,那么索引会变的庞大臃肿,起到的效果可能并不是很明显。这时候可以截取列的前面一部分,创建索引,节省空间,这样可能会出现索引的选择性下降,即基于前缀索引查询出的相似数据可能很多:

ALTER TABLE ds_order ADD KEY (order_no(30)) ;

这里由于订单号太长,所以选择前面30位作为前缀索引,用作订单号的查询,当然这里涉及到一个非常经典的业务场景,订单号机制。

业务场景:前缀索引一个典型的应用场景就是处理订单号,一个看似很长的订单号,其实包含的信息非常多:

MySQL进阶篇(03):合理的使用索引结构和查询

  • 时间点:就是订单生成的时间,年月日时分秒;
  • 标识位:即一个唯一的UID,保证订全单号唯一;
  • 埋点一:在很多业务中,在订单号记录产品类目;
  • 埋点二:通常会标识产品属性,例如颜色,口味等;
  • 错位符:防止订单号被分析,会随机一段错位符号;

如此一段分析下来,实际订单号是非常长的,所以需要引入前缀索引机制,前缀索引期望使用的索引长度可以筛选整个列的基数,例如上面的订单号:

  • 大部分业务基于时间节点筛选足够,即索引长度14位;
  • 如果是并发业务,很多时间节点相同,则索引长度是时间点+标识位;

注意:如果业务允许的情况下,一般要求前缀索引的长度有唯一性,例如上面的时间和标示位。

4、其他索引

例如全文索引等,这些用到的场景不多,如果数据庞大,又需要检索等,通常会选择强大的搜索中间件来处理。显式唯一索引,这种也会在程序上做规避,避免不友好的异常被抛出。

三、索引查询

如何创建最优的索引,是一件不容易的事情,同样在查询的时候,是否使用索引也是一件难度极大的事情,经验之谈:多数是性能问题暴露的时候,才会回头审视查询的SQL语句,针对性能问题,做相应的查询优化。

1、单列查询

这里直接查询主键索引,MySQL的主键一般选择自增,所以速度非常快。

EXPLAIN SELECT * FROM ds_order WHERE id=2;
EXPLAIN SELECT * FROM ds_order WHERE id=1+1;
EXPLAIN SELECT * FROM ds_order WHERE id+1=1;

这里,id=2,id=1+1,MySQL都可以自动解析,但是id+1是在索引列上执行运算,直接导致主键索引失效。这里有一个基本策略,如果非要在单列索引上做操作,可以将该逻辑放在程序中,到MySQL层面,SQL语句越干净利落越好。

2、前缀索引查询

前缀索引的查询,可以基于Like对特定长度筛选,或者全订单号查询。

EXPLAIN SELECT * FROM ds_order WHERE order_no LIKE '202008011314158723628732871625%';
EXPLAIN SELECT * FROM ds_order WHERE order_no='20200801131415872362873287162572367';

3、组合索引查询

查询最麻烦的就是组合索引,或者说查询条件组合起来,都使用了索引:

EXPLAIN SELECT * FROM ds_order 
WHERE create_time>'2020-08-01 00:00:00' AND order_state='1';

上述基于组合索引中列的顺序,使用了组合索引:state_create_time_index。

EXPLAIN SELECT * FROM ds_order WHERE create_time>'2020-08-01 00:00:00';

上述只使用create_time列,也同样使用了索引结构。

EXPLAIN SELECT * FROM ds_order WHERE order_state='1';

上述如果只使用order_state条件,则结果显示全表扫描。

EXPLAIN SELECT * FROM ds_order 
WHERE create_time>'2020-08-01 00:00:00' AND order_no LIKE '20200801%';

上述则基于组合索引的create_time列和单列索引order_no保证查询条件都使用了索引。

通过上面几个查询案例,索引组合索引使用的注意事项如下:

  • 组合索引必须按索引最左列开始查询;
  • 不能跳过组合字段查询,这样无法使用索引;

四、索引其他说明

1、索引的优点

  • 基于注解或唯一索引保证数据库表中数据的唯一性;
  • 索引通过减少扫描表的行数提高查询的效率;

2、索引的缺点

  • 创建索引和维护索引,会耗费空间和实际;
  • 查询以外的操作增删改等,都需要动态维护索引;

3、索引使用总结

索引机制在MySQL中真的非常复杂,非专业的DBA(就是指开发人员),基本要熟练常见的索引结构,待过两年所谓的大厂,每个版本开发涉及的核心表SQL都是有专业DBA验收,复杂的查询都是提交需求,DBA直接输出查询SQL,当然在一般公司是没有DBA,需要开发在开发的过程中不断的思考,逐步优化,这需要对业务数据有一定的敏感度,对核心接口有执行监控,当发现稍微出现耗时情况,就可以不断优化,这个积累是个枯燥和进步的过程。

五、源代码地址

GitHub·地址
https://github.com/cicadasmile/mysql-data-base
GitEE·地址
https://gitee.com/cicadasmile/mysql-data-base

MySQL进阶篇(03):合理的使用索引结构和查询

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
为什么mysql不推荐使用雪花ID作为主键
作者:毛辰飞背景在mysql中设计表的时候,mysql官方推荐不要使用uuid或者不连续不重复的雪花id(long形且唯一),而是推荐连续自增的主键id,官方的推荐是auto_increment,那么为什么不建议采用uuid,使用uuid究
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这