Pyecharts绘图API总结

Python进阶者
• 阅读 545

一、初识Pyecharts

大家好,我是Python进阶者。

pyecharts简介

pyecharts 是一个用于生成 Echarts 图表的类库, Echarts 是一个由百度开源的数据可视化,凭借着良好的交互性,精巧的图表设计,得到了众多开发者的认可。而 Python 是一门富有表达力的语言,很适合用于数据处理。当数据分析遇上数据可视化时,pyecharts 诞生了。

Pyecharts官网

https://pyecharts.org/#/zh-cn/intro

pyecharts安装

pip install pyecharts

二、Pyecharts可视化

使用pyecharts可以绘制如下图表:

Pyecharts绘图API总结

这里我们简介一下常用的图表的API:

2.0、初始化设置

导入相关库:

from pyecharts.charts import *
import pyecharts.options as opts
  • from pyecharts.charts import *: 可以使用所有的图表对应的函数;
  • 使用 options 配置项,在 pyecharts 中,一切皆 Options,进行参数设置;

总体说明一下:

  1. .render_notebook ()随时随地渲染图表;
  2. .render() 这个不会直接产生图表,而是形成一个render.html的文件,可在浏览器中打开查看图表;

2.1、scatter()

这里我们绘制一个正余弦的散点图

x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)
y2 = np.cos(x)

# 参数设置
(Scatter() # 图形种类
 .add_xaxis(xaxis_data=x) # 设置x轴序列
 .add_yaxis(series_name='sin', y_axis=y) # 设置y轴序列
 .add_yaxis(series_name='cos', y_axis=y2, label_opts=opts.LabelOpts(is_show=False)) # is_show = False:表示不显示数值部分
).render_notebook()

结果如下:

Pyecharts绘图API总结

2.2、line()

from pyecharts.charts import Line
import pyecharts.options as opts

x = np.linspace(0, 2*np.pi, 100)
y = np.sin(x)

(
    Line()
    .add_xaxis(xaxis_data=x)
    .add_yaxis(series_name='sin', y_axis=y, label_opts=opts.LabelOpts(is_show=False))
    .add_yaxis(series_name='cos', y_axis=np.cos(x), label_opts=opts.LabelOpts(is_show=False))
    .set_global_opts(title_opts=opts.TitleOpts(title='曲线'),
                     tooltip_opts=opts.TooltipOpts(axis_pointer_type='cross')
                    )
).render_notebook()

结果如下所示:

Pyecharts绘图API总结

2.3、Bar()

柱状图的绘制:

from pyecharts.charts import Bar

bar = (
    Bar()
    .add_xaxis(["衬衫", "羊毛衫", "雪纺衫", "裤子", "高跟鞋", "袜子"])
    .add_yaxis("商家A", [5, 20, 36, 10, 75, 90])
)
bar.render_notebook()

结果如下:

Pyecharts绘图API总结

当然,这里只是最基本的柱图使用;我们还可以绘制混合柱图;

from pyecharts.charts import Bar
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
num2 = [90, 110, 101, 70, 90, 120, 99]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Bar(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='商家A', yaxis_data=num)
    .add_yaxis(series_name='商家B', yaxis_data=num2)
    .set_global_opts(
        title_opts=opts.TitleOpts(title='各商家拥有犬类数量情况', subtitle='如有雷同,纯属意外')
    )
).render_notebook()

结果如下所示:

Pyecharts绘图API总结

2.4、Pie()

普通饼图:

from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

结果如下:

Pyecharts绘图API总结

环状饼图:

from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
         radius=['40%', '75%'],
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

如图所示:

Pyecharts绘图API总结

玫瑰饼图:

from pyecharts.charts import Pie
import pyecharts.options as opts

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

(
    Pie(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add(series_name='', 
#          radius=['40%', '75%'],
#          center=['25%', '50%'],
         rosetype='radius',
         data_pair=[(j, i) for i, j in zip(num, lab)]
        )
).render_notebook()

如图所示:

[图片上传失败...(image-6a148-1646274550486)]

2.5、图表的组合使用

from pyecharts.charts import Bar, Line

num = [110, 136, 108, 48, 111, 112, 103]
lab = ['哈士奇', '萨摩耶', '泰迪', '金毛', '牧羊犬', '吉娃娃', '柯基']

bar = (
    Bar(init_opts=opts.InitOpts(width='720px', height='320px'))
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='', yaxis_data=num)
)

lines = (
    Line()
    .add_xaxis(xaxis_data=lab)
    .add_yaxis(series_name='', y_axis=num, label_opts=opts.LabelOpts(is_show=False))
)

bar.overlap(lines).render_notebook()

如图所示:

Pyecharts绘图API总结

三、总结

Pyecharts可以绘制各种各样的图表,主流的一个数据可视化的库,因为相对于matplotlib,seaborn等数据可视化库,它的交互性比较好,图形绘制的比较清晰美观,所以应用的比较广泛,本文主要就普通常用图形做了简单的总结,当然它还可以绘制地理图形,具体参见官网相关API。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Irene181 Irene181
3年前
python数据分析——pyecharts柱状图全解(小白必看)
一、pyecharts简介pyecharts主要基于Web浏览器进行显示,绘制的图形比较多,包括折线图、柱状图、饼图、漏斗图地图和极坐标图等。使用pyecharts绘图代码量很少,但绘制的图形比较美观。pyecharts分为v0.5.X和v1两个大版本,v0.5.X和v1间不兼容,v1是一个全新的版本v0.5.X支持Python2
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
黎明之道 黎明之道
3年前
python之利用pyecharts可视化(各种图表的绘制)
pyecharts可视化pyecharts是基于Echart图表的一个类库,而Echart是百度开源的一个可视化JavaScript库。简介:pyecharts主要基于web浏览器进行显示,绘制的图形比较
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Stella981 Stella981
3年前
Python模块
目录pyecharts模块简介安装pyecharts测试pyecharts模块pyecharts实战:绘制新冠肺炎疫情地图需求分析请求数据提取数据处理数据制作可视化地图设置可视
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这