推荐
专栏
教程
课程
飞鹅
本次共找到2737条
python神经网络
相关的信息
helloworld_38131402
•
2年前
深度学习与图神经网络学习分享:Transformer 整体结构
在过去的几年中,神经网络的兴起与应用成功推动了模式识别和数据挖掘的研究。许多曾经严重依赖于手工提取特征的机器学习任务(如目标检测、机器翻译和语音识别),如今都已被各种端到端的深度学习范式(例如卷积神经网络(CNN)、长短期记忆(LSTM)和自动编码器)彻底改变了。曾有学者将本次人工智能浪潮的兴起归因于三个条件,分别是:·计算资源的快速发展(如GPU)·大
李志宽
•
3年前
CTF 中如何欺骗 AI
近年来,笔者在国内外CTF竞赛中见到不少与AI相关的题目。有一些是需要选手自行实现一个AI,来自动化某些操作;有些是给出了一个目标AI模型,要求选手进行破解。本文主要谈论后者——在CTF竞赛中,我们如何欺骗题目给出的AI?CTF中的欺骗AI问题一般分成两类:基于神经网络的和基于统计模型的。如果题目要求选手欺骗神经网络,一般会给出白盒
Wesley13
•
3年前
R语言实现人工神经网络预测实例
R语言中很多包(package)关于神经网络,例如nnet、AMORE、neuralnet以及RSNNS。nnet提供了最常见的前馈反向传播神经网络算法。AMORE包则更进一步提供了更为丰富的控制参数,并可以增加多个隐藏层。neuralnet包的改进在于提供了弹性反向传播算法和更多的激活函数形式。RSNNS则是连接R和SNNS的工具,在R中即可直接调用SNN
Stella981
•
3年前
ImageNet Classification with Deep Convolutional Neural Networks
摘要我们训练了一个大型的深度卷积神经网络,将ImageNetlsvprc2010竞赛中的120万幅高分辨率图像分成1000个不同的类。在测试数据上,我们实现了top1名的错误率为37.5%,top5名的错误率为17.0%,大大优于之前的水平。该神经网络有6000万个参数和65万个神经元,由5个卷积层和3个完全连接的层组成,其中一些卷积层之
Easter79
•
3年前
TinyML
在小型设备运行MachineLearning,通常面临着三大挑战 功耗(powerconsumption)延时(latency)精度(Accuracy)人们通常比较了解MachineLearning,因为它与神经网络相关(pertaintoneuralnetworks),那么TinyMNL又是什么呢?
Stella981
•
3年前
Appearance
德国马普所XucongZhang博士等最早尝试使用神经网络来做视线估计Zhang,X.,Sugano,Y.,Fritz,M.,andBulling,A.(2015).Appearancebasedgazeestimationinthewild.InIEEEConferenceonComputerVisiona
helloworld_54277843
•
2年前
卷积神经网络模型发展及应用
卷积神经网络模型发展及应用转载地址:http://fcst.ceaj.org/CN/abstract/abstract2521.shtml深度学习是机器学习和人工智能研究的最新趋势,作为一个十余年来快速发展的崭新领域,越来越受到研究者的关注。卷积神经网络(CNN)模型是深度学习模型中最重要的一种经典结构,其性能在近年来深度学习任务上逐步提高。由于可以自动学
helloworld_54277843
•
2年前
卷积神经网络表征可视化研究综述
卷积神经网络表征可视化研究综述(1)转载自:人工智能技术与咨询源自:自动化学报作者:司念文张文林屈丹罗向阳常禾雨牛铜摘要近年来,深度学习在图像分类、目标检测及场景识别等任务上取得了突破性进展,这些任务多以卷积神经网络为基础搭建识别模型,训练后的模型拥有优异的自动特征提取和预测性能,能够为用户提供“输入–输出”形式的端到端解决方案.然而,
helloworld_38131402
•
2年前
深度学习与图神经网络研修
深度学习与图神经网络研修时间2022年10月13日—2022年10月17日直播特色:1、采用深入浅出的方法,结合实例并配以大量代码练习,重点讲解深度学习框架模型、科学算法、训练过程技巧。2、能够把握深度学习的技术发展趋势,可以熟练掌握深度学习核心技术、实践技巧,同时针对工作中存在的疑难问题进行分析讲解和专题讨论,有效的提升学员解决复杂问题的能力;3
helloworld_82640923
•
2年前
迁移学习核心技术的开发与应用
一、机器学习简介与经典机器学习算法介绍1.什么是机器学习?2.机器学习框架与基本组成3.机器学习的训练步骤4.机器学习问题的分类5.经典机器学习算法介绍章节目标:机器学习是人工智能的重要技术之一,详细了解机器学习的原理、机制和方法,为学习深度学习与迁移学习打下坚实的基础。二、深度学习简介与经典网络结构介绍1.神经网络简介2.神经网络组件简介3.神经网
1
•••
3
4
5
•••
274