小万哥 小万哥
7个月前
NumPy 二项分布生成与 Seaborn 可视化技巧
二项分布是描述固定次数独立试验中成功次数的概率分布,常用于分析二元结果的事件,如抛硬币。分布由参数n(试验次数)、p(单次成功概率)和k(成功次数)定义。概率质量函数P(k)C(n,k)p^k(1p)^(nk)。NumPy的random.binomial()可生成二项分布数据,Seaborn可用于可视化。当n大且p接近0.5时,二项分布近似正态分布。练习包括模拟不同条件下的二项分布和应用到考试场景。
小白学大数据 小白学大数据
7个月前
网页爬虫开发:使用Scala和PhantomJS访问知乎
引言随着大数据时代的到来,网页爬虫作为一种高效的数据收集工具,被广泛应用于互联网数据抓取和信息抽取。而知乎是一个知识分享平台,拥有大量的用户生成内容。通过爬虫获取知乎数据,企业和研究人员可以进行深入的数据分析和市场研究,了解用户的需求、兴趣和行为模式,从而
小万哥 小万哥
7个月前
NumPy 均匀分布模拟及 Seaborn 可视化教程
本文介绍了均匀分布和逻辑分布。均匀分布是连续概率分布,所有事件在指定范围内有相等概率发生,常用于随机数生成。其概率密度函数为f(x)1/(ba),其中a和b分别为下限和上限。NumPy的random.uniform()可生成均匀分布的随机数。Seaborn可用于可视化分布。文中还提供了练习及解决方案,包括生成不同范围的均匀分布随机数、比较分布形状变化及模拟抛硬币实验。逻辑分布则常用于S形增长现象的建模,其PDF为(scale/(π(1(xloc)/scale)^2)),由位置参数loc和尺度参数scale定义。
小万哥 小万哥
7个月前
多项分布模拟及 Seaborn 可视化教程
多项分布是二项分布的推广,描述了在n次试验中k种不同事件出现次数的概率分布。参数包括试验次数n、结果概率列表pvals(和为1)和输出形状size。PMF公式展示了各结果出现次数的概率。NumPy的random.multinomial()可生成多项分布数据。练习包括模拟掷骰子和抽奖活动。解决方案提供了相关图表绘制代码。关注公众号“LetusCoding”获取更多内容。
小万哥 小万哥
7个月前
卡方分布和 Zipf 分布模拟及 Seaborn 可视化教程
卡方分布是统计学中的一种连续概率分布,用于假设检验,形状由自由度(df)决定。自由度越大,分布越平缓。NumPy的random.chisquare()可生成卡方分布随机数。Seaborn能可视化卡方分布。练习包括模拟不同自由度的卡方分布、进行卡方检验。瑞利分布描述信号处理中幅度分布,参数为尺度(scale)。Zipf分布常用于自然语言等幂律特征数据,参数a控制形状。NumPy的random.zipf()生成Zipf分布随机数。
子桓 子桓
7个月前
【Discuss】FIN_WAIT2状态下到底能不能收数据包?
问题由来:错误的keepalived时间设置服务端设置了httpkeepalived时间1s,客户端时间大于server端,客户端反应某些请求没有响应,查看服务日志一些http请求根本没有收到,但是客户端确实记录发送了,只好抓包看在哪里丢弃了服务端:pyt
钟馗 钟馗
6个月前
小白学大数据 小白学大数据
6个月前
Java Selenium WebDriver:代理设置与图像捕获
在网络爬虫和自动化测试领域,SeleniumWebDriver是一个非常流行的工具,它允许开发者模拟用户在浏览器中的操作。然而,出于安全或隐私的考虑,有时我们需要通过代理服务器来发送请求。本文将介绍如何在Java环境中使用SeleniumWebDriver
小白学大数据 小白学大数据
5个月前
如何使用pholcus库进行多线程网页标题抓取以提高效率?
在当今信息爆炸的时代,数据抓取已成为获取信息的重要手段。Go语言因其高效的并发处理能力而成为编写爬虫的首选语言之一。pholcus库,作为一个强大的Go语言爬虫框架,提供了多线程抓取的能力,可以显著提高数据抓取的效率。本文将介绍如何使用pholcus库进行
智多星V+TNY264278 智多星V+TNY264278
5个月前
采集数据的时候,碰到反爬虫程序怎么办?
当碰到反爬虫程序时,可以尝试以下几种方法来应对:一、调整访问频率降低请求速度:大多数反爬虫机制是基于访问频率来判断是否为爬虫的。如果采集数据时请求发送得过于频繁,很容易被目标网站识别出来。例如,原本你每秒发送10个请求,现在将其降低到每秒12个请求,使其更