Easter79 Easter79
3年前
TensorFlow为新旧Mac特供新版本,GPU可用于训练,速度最高提升7倍
苹果「一呼百应」的号召力在机器学习领域似乎也不例外。新版Mac推出还不到两周,谷歌就把专为Mac优化的TensorFlow版本做好了,训练速度最高提升到原来的7倍。机器之心报道,机器之心编辑部。对于开发者、工程师、科研工作者来说,Mac一直是非常受欢迎的平台,也有人用Mac训练神经网络,但训练速度一直是一个令人头疼的问题。
Wesley13 Wesley13
3年前
MXNET:丢弃法
除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。方法与原理为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时。当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉。设丢弃概率为$p$。具体来说,该层任一神经元在应用激活函数后,有$p$的概率自乘0,有
Wesley13 Wesley13
3年前
AI领域最最最稀缺的人才——AI架构师
分布式技术是深度学习技术的加速器。同时利用多个工作节点,分布式地、高效地训练出性能优良的神经网络模型,能够显著提高深度学习的训练效率、进一步增大其应用范围。《首席AI架构师——分布式高性能深度学习实战培养计划》,力图从更宽的视角,梳理清楚深度学习框架、AI应用、部署上线的整个环节,让你在AI职业规划上可以多一些选择。!(https
Wesley13 Wesley13
3年前
CNN中常用的四种卷积详解
卷积现在可能是深度学习中最重要的概念。正是靠着卷积和卷积神经网络,深度学习才超越了几乎其他所有的机器学习手段。这期我们一起学习下深度学习中常见的卷积有哪些?1\.一般卷积卷积在数学上用通俗的话来说就是输入矩阵与卷积核(卷积核也是矩阵)进行对应元素相乘并求和,所以一次卷积的结果的输出是一个数,最后对整个输入输入矩阵进行遍历,
Stella981 Stella981
3年前
KTV歌曲推荐
前言上一篇写了推荐系统最古老的的一种算法叫协同过滤,古老并不是不好用,其实还是很好用的一种算法,随着时代的进步,出现了神经网络和因子分解等更优秀的算法解决不同的问题。这里主要说一下逻辑回归,逻辑回归主要用于打分的预估。我这里没有打分的数据所以用性别代替。这里的例子就是用歌曲列表预判用户性别。什么是逻辑回归逻辑回归的资料比
Easter79 Easter79
3年前
TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围:tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层二:原理:  dropout就是在不同的训练过程中随机扔掉一部分神经元。也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重得保留
可莉 可莉
3年前
2020最新版《神经网络与深度学习》中文版 pdf 开放下载
点击上方“逆锋起笔”,关注领取视频教程☞程序员进阶必备资源免费送「各种技术!」☜(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fmp.weixin.qq.com%2Fs%3F__biz%3DMzUyMzM2ODUwMA%3D%3D%26mid%3D2247486226%26id
PyTorch已为我们实现了大多数常用的非线性激活函数
PyTorch已为我们实现了大多数常用的非线性激活函数,我们可以像使用任何其他的层那样使用它们。让我们快速看一个在PyTorch中使用ReLU激活函数的例子:在上面这个例子中,输入是包含两个正值、两个负值的张量,对其调用ReLU函数,负值将取为0,正值则保持不变。现在我们已经了解了构建神经网络架构的大部分细节,我们来构建一个可用于解决真实问题的深度学习架构。
PyTorch已为我们实现了大多数常用的非线性激活函数
PyTorch已为我们实现了大多数常用的非线性激活函数,我们可以像使用任何其他的层那样使用它们。让我们快速看一个在PyTorch中使用ReLU激活函数的例子:在上面这个例子中,输入是包含两个正值、两个负值的张量,对其调用ReLU函数,负值将取为0,正值则保持不变。现在我们已经了解了构建神经网络架构的大部分细节,我们来构建一个可用于解决真实问题的深度学习架构。
迁移学习(Transfer Learning)
1.深入了解神经网络的组成、训练和实现,掌握深度空间特征分布等关键概念;2.掌握迁移学习的思想与基本形式,了解传统迁移学习的基本方法,对比各种方法的优缺点;3.握深度迁移学习的思想与组成模块,学习深度迁移学习的各种方法;4.掌握深度迁移学习的网络结构设计、目标函数设计的前沿方法,了解迁移学习在PDA、SourceFreeDA上的应用;5.掌握深度迁移学习在