推荐
专栏
教程
课程
飞鹅
本次共找到531条
灰度图像
相关的信息
Karen110
•
3年前
Python-OpenCV获取图像轮廓的图像处理方法
一、引言在《OpenCV阈值处理函数threshold处理32位彩色图像的案例》介绍了threshold函数,但threshold的图像阈值处理对于某些光照不均的图像,这种全局阈值分割的方法并不能得到好的效果。图像阈值化操作中,我们更关心的是从二值化图像中分离目标区域和背景区域,仅仅通过固定阈值很难达到理想的分割效果。在图片中的灰度是不均匀的,所以通常情
Karen110
•
3年前
图像灰度与灰阶的纠结:gray level/scale译文释义
一、引言进行图像处理的人,对灰度一词一定非常熟悉,老猿以前没接触过图像基础知识,数学知识基本上也都忘光了,因此在自学OpenCVPython过程中遇到了很多困难。为了弥补基础知识的不足,特地下载了冈萨雷斯(RafaelC.Gonzalez)编著的《数字图像处理》(DigitalImageProcessing)第三版的中文译本和英文原本电子书对照学
Stella981
•
3年前
Opentracing + Uber Jaeger 全链路灰度调用链,Nepxion Discovery
当网关和服务在实施全链路分布式灰度发布和路由时候,我们需要一款追踪系统来监控网关和服务走的是哪个灰度组,哪个灰度版本,哪个灰度区域,甚至监控从HttpHeader头部全程传递的灰度规则和路由策略。这个功能意义在于:不仅可以监控全链路中基本的调用信息,也可以监控额外的灰度信息,有助于我们判断灰度发布和路由是否执行准确,一旦有问题,也可以快速定位
Stella981
•
3年前
Android OpenCV(二十二):边缘检测
边缘检测什么是图像的边缘?图像的边缘是图像最基本的特征之一。所谓边缘(或边沿)是指周围像素灰度有跳跃性变化或“屋顶”变化的那些像素的集合。边缘是图像局部强度变化最明显的地方,它主要存在于目标与目标、目标与背景、区域与区域之间,因此它是图像分割依赖的重要特征。从本质上说,图像边缘是图像局部特性不连续性(灰度突变、颜色突变、纹理结构
Stella981
•
3年前
Python OpenCV实例:图像灰度拉伸
coding:utf8'''灰度拉伸定义:灰度拉伸,也称对比度拉伸,是一种简单的线性点运算。作用:扩展图像的直方图,使其充满整个灰度等级范围内公式:g(x,y)255/(BA)f(x,y)A,其中,Aminf(x,y),最小
可莉
•
3年前
14、OpenCV实现图像的空间滤波——图像锐化及边缘检测
1、图像锐化理论基础1、锐化的概念 图像锐化的目的是使模糊的图像变得清晰起来,主要用于增强图像的灰度跳变部分,这一点与图像平滑对灰度跳变的抑制正好相反。而且从算子可以看出来,平滑是基于对图像领域的加权求和或者说积分运算的,而锐化则是通过其逆运算导数(梯度)或者说有限差分来实现的。2、图像的一阶微分和二阶
Stella981
•
3年前
OpenCV调整彩色图像的饱和度和亮度
问题如何调整彩色图像的饱和度和亮度解决思路详细步骤:1.将RGB图像值归一化到\0,1\2.然后使用函数cvtColor进行色彩空间的转换3.接下来可以根据处理灰度图像对比度增强伽马变换或者线性变换调整饱和度和亮度分量4.最后转换到RGB色彩空间代码!/usr/bi
Stella981
•
3年前
Python骚操作:利用Python获取摄像头并实时控制人脸!
实现流程从摄像头获取视频流,并转换为一帧一帧的图像,然后将图像信息传递给opencv这个工具库处理,返回灰度图像(就像你使用本地静态图片一样)程序启动后,根据监听器信息,使用一个while循环,不断的加载视频图像,然后返回给opencv工具呈现图像信息。创建一个键盘事件监听,按下"d"键,则开始执行面部匹配,并进行面具加
Stella981
•
3年前
Python OpenCV实例:图像直方图均衡化(数学公式简单实现)
coding:utf8'''直方图均衡化作用:通常用来增加图像局部对比度,尤其在图像的有用数据的对比度相当接近时,通过直方图均衡化,图像的亮度可以更好地在直方图上分布基本思想:把原始图像的直方图变换为均匀分布的形式,增加了像素灰度值的动态范围,从而增强图像的整
马尚
•
8个月前
验证码识别实战
验证码是网站常用的一种安全验证手段,但是对于自动化程序来说,验证码可能是个难题。本文将介绍如何使用Python和一些常用的库来识别验证码图像。步骤1:预处理图像首先,我们需要对验证码图像进行预处理,以便更好地提取图像中的文本信息。预处理包括灰度化和二值化。
1
2
3
•••
54