推荐
专栏
教程
课程
飞鹅
本次共找到33条
权重
相关的信息
Wesley13
•
3年前
MXNET:丢弃法
除了前面介绍的权重衰减以外,深度学习模型常常使用丢弃法(dropout)来应对过拟合问题。方法与原理为了确保测试模型的确定性,丢弃法的使用只发生在训练模型时,并非测试模型时。当神经网络中的某一层使用丢弃法时,该层的神经元将有一定概率被丢弃掉。设丢弃概率为$p$。具体来说,该层任一神经元在应用激活函数后,有$p$的概率自乘0,有
Stella981
•
3年前
Android:Layout_weight的深刻理解
最近写Demo,突然发现了Layout\_weight这个属性,发现网上有很多关于这个属性的有意思的讨论,可是找了好多资料都没有找到一个能够说的清楚的,于是自己结合网上资料研究了一下,终于迎刃而解,写出来和大家分享。首先看一下Layout\_weight属性的作用:它是用来分配属于空间的一个属性,你可以设置他的权重。很多人不知道剩余空间是个什么概念,下面
Easter79
•
3年前
TensorFlow之tf.nn.dropout():防止模型训练过程中的过拟合问题
一:适用范围:tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层二:原理: dropout就是在不同的训练过程中随机扔掉一部分神经元。也就是让某个神经元的激活值以一定的概率p,让其停止工作,这次训练过程中不更新权值,也不参加神经网络的计算。但是它的权重得保留
1
2
3
4