mysql 锁机制

Wesley13
• 阅读 754

锁是计算机协调多个进程或线程并发访问某一资源的机制。在数据库中,除传统的 计算资源(如CPU、RAM、I/O等)的争用以外,数据也是一种供许多用户共享的资源。如何保证数据并发访问的一致性、有效性是所有数据库必须解决的一 个问题,锁冲突也是影响数据库并发访问性能的一个重要因素。从这个角度来说,锁对数据库而言显得尤其重要,也更加复杂。本章我们着重讨论MySQL锁机制 的特点,常见的锁问题,以及解决MySQL锁问题的一些方法或建议。 
Mysql用到了很多这种锁机制,比如行锁,表锁等,读锁,写锁等,都是在做操作之前先上锁。这些锁统称为悲观锁(Pessimistic Lock)。

MySQL锁概述

相对其他数据库而言,MySQL的锁机制比较简单,其最 显著的特点是不同的存储引擎支持不同的锁机制。比如,MyISAM和MEMORY存储引擎采用的是表级锁(table-level locking);BDB存储引擎采用的是页面锁(page-level locking),但也支持表级锁;InnoDB存储引擎既支持行级锁(row-level locking),也支持表级锁,但默认情况下是采用行级锁。 
表级锁:开销小,加锁快;不会出现死锁;锁定粒度大,发生锁冲突的概率最高,并发度最低。 
行级锁:开销大,加锁慢;会出现死锁;锁定粒度最小,发生锁冲突的概率最低,并发度也最高。 
页面锁:开销和加锁时间界于表锁和行锁之间;会出现死锁;锁定粒度界于表锁和行锁之间,并发度一般 
从上述特点可见,很难笼统地说哪种锁更好,只能就具体应用的特点来说哪种锁更合适!仅从锁的角度 来说:表级锁更适合于以查询为主,只有少量按索引条件更新数据的应用,如Web应用;而行级锁则更适合于有大量按索引条件并发更新少量不同数据,同时又有 并发查询的应用,如一些在线事务处理(OLTP)系统。

MyISAM表锁

MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)表独占写锁(Table Write Lock)。 
对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对 MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如表20-2所示的 例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

如何加表所:

MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作 (UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在示例中,显式加锁基本上都是为了演示而已,并非必须如此。 
给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。例如, 有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计 subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:

Select sum(total) from orders;
Select sum(subtotal) from order_detail;

这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是:

Lock tables orders read local, order_detail read local;
Select sum(total) from orders;
Select sum(subtotal) from order_detail;
Unlock tables;

要特别说明以下两点内容: 
1、上面的例子在LOCK TABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面还会进一步介绍。 
2、在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的 情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

当使用LOCK TABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!举例说明如下。 
(1)对actor表获得读锁:

mysql> lock table actor read; 
Query OK, 0 rows affected (0.00 sec)

并发插入(Concurrent Inserts)

上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。 
MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

  • 当concurrent_insert设置为0时,不允许并发插入。
  • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。
  • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

MyISAM的锁调度

前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个 MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后 到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原 因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM 的调度行为。

  • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。
  • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。
  • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。 
另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。

上面已经讨论了写优先调度机制带来的问题和解决办法。这 里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语 句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每 一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB锁

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。

1、事务(Transaction)及其ACID属性 
事务是由一组SQL语句组成的逻辑处理单元,事务具有4属性,通常称为事务的ACID属性。

  • 原子性(Actomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。
  • 一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以操持完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。
  • 隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。
  • 持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

2、并发事务带来的问题 
相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

  • 更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题——最后的更新覆盖了其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改保存其更改副本的编辑人员覆盖另一个编辑人员所做的修改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。
  • 脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”的数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做“脏读”。
  • 不可重复读(Non-Repeatable Reads):一个事务在读取某些数据已经发生了改变、或某些记录已经被删除了!这种现象叫做“不可重复读”。
  • 幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

3、事务隔离级别 
在并发事务处理带来的问题中,“更新丢失”通常应该是完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。

“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本可以分为以下两种。

  • 一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。
  • 另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。

InnoDB的行锁模式及加锁方法

InnoDB实现了以下两种类型的行锁。

  • 共享锁(s):又称读锁。允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。若事务T对数据对象A加上S锁,则事务T可以读A但不能修改A,其他事务只能再对A加S锁,而不能加X锁,直到T释放A上的S锁。这保证了其他事务可以读A,但在T释放A上的S锁之前不能对A做任何修改。

  • 排他锁(X):又称写锁。允许获取排他锁的事务更新数据,阻止其他事务取得相同的数据集共享读锁和排他写锁。若事务T对数据对象A加上X锁,事务T可以读A也可以修改A,其他事务不能再对A加任何锁,直到T释放A上的锁。

  • 对于共享锁大家可能很好理解,就是多个事务只能读数据不能改数据。 
    对于排他锁大家的理解可能就有些差别,我当初就犯了一个错误,以为排他锁锁住一行数据后,其他事务就不能读取和修改该行数据,其实不是这样的。排他锁指的是一个事务在一行数据加上排他锁后,其他事务不能再在其上加其他的锁。mysql InnoDB引擎默认的修改数据语句:update,delete,insert都会自动给涉及到的数据加上排他锁,select语句默认不会加任何锁类型,如果加排他锁可以使用select …for update语句,加共享锁可以使用select … lock in share mode语句。所以加过排他锁的数据行在其他事务种是不能修改数据的,也不能通过for update和lock in share mode锁的方式查询数据,但可以直接通过select …from…查询数据,因为普通查询没有任何锁机制。

  • 死锁:MyISAM表锁是deadlock free的,这是因为MyISAM总是一次性获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁

    但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了InnoDB发生死锁是可能的

    发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并退回,另一个事务获得锁,继续完成事务

    • 但在涉及外部锁,或涉及锁的情况下,InnoDB并不能完全自动检测到死锁
    • 这需要通过设置锁等待超时参数innodb_lock_wait_timeout来解决*
      需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获取所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖垮数据库
      我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

    通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小、以及访问数据库的SQL语句,绝大部分都可以避免

    下面就通过实例来介绍几种死锁的常用方法。

    • 应用中,不同的程序会并发存取多个表
      尽量约定以相同的顺序访问表
    • 程序批处理数据时
      事先对数据排序,保证每个线程按固定的顺序来处理记录
    • 在事务中,要更新记录
      直接申请排他锁,而不应该先申请共享锁
    • 可重复读下,如果两个线程同时对相同条件记录用SELECT...ROR UPDATE加排他写锁
      在没有符合该记录情况下,两个线程都会加锁成功
      程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁
      这种情况下,将隔离级别改成READ COMMITTED,就可以避免问题
    • 当隔离级别为READ COMMITED时,如果两个线程都先执行SELECT...FOR UPDATE
      判断是否存在符合条件的记录,没有 -> 插入记录;
      此时,只有一个线程能插入成功,另一个线程会出现锁等待.
      当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁.
      对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁

    如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因和改进措施。

  • 间隙锁(Next-Key锁):

    当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据的索引项加锁;
    对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁).

    举例来说,假如emp表中只有101条记录,其empid的值分别是1,2,...,100,101,下面的SQL:
    InnoDB 不仅会对符合条件的 empid 值为 101 的记录加锁;
    也会对 empid大于101(这些记录并不存在)的“间隙”加锁;                                                                                                                                                                                                                                                                                                                                    

    间隙锁的目的:

    • 防止幻读,以满足相关隔离级别的要求
      对于上例,若不使用间隙锁,如果其他事务插入 empid 大于 100 的任何记录,;
      那么本事务如果再次执行上述语句,就会发生幻读
    • 满足其恢复和复制的需要
      在使用范围条件检索并锁定记录时;
      InnoDB 这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待;
      因此,在实际开发中,尤其是并发插入较多的应用;
      我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件.

另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。

  • 意向共享锁(IS):事务打算给数据行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。
  • 意向排他锁(IX):事务打算给数据行加排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

InnoDB行锁实现方式

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Stella981 Stella981
3年前
KVM调整cpu和内存
一.修改kvm虚拟机的配置1、virsheditcentos7找到“memory”和“vcpu”标签,将<namecentos7</name<uuid2220a6d1a36a4fbb8523e078b3dfe795</uuid
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这