Serverless 实战:3 分钟实现文本敏感词过滤

Stella981
• 阅读 686

敏感词过滤是随着互联网社区发展一起发展起来的一种阻止网络犯罪和网络暴力的技术手段,通过对可能存在犯罪或网络暴力可能的关键词进行有针对性的筛查和屏蔽,很多时候我们能够防患于未然,把后果严重的犯罪行为扼杀于萌芽之中。

随着各种社交平台等的日益火爆,敏感词过滤逐渐成了非常重要的也是值得重视的功能。那么在 Serverless 架构下,通过Python 语言,敏感词过滤又有那些新的实现呢?我们能否是用最简单的方法,实现一个敏感词过滤的API呢?

了解敏感过滤的几种方法

Replace方法

如果说敏感词过滤,其实不如说是文本的替换,以Python为例,说到词汇替换,不得不想到replace,我们可以准备一个敏感词库,然后通过replace进行敏感词替换:

def worldFilter(keywords, text):
    for eve in keywords:
        text = text.replace(eve, "***")
    return text
keywords = ("关键词1", "关键词2", "关键词3")
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。"
print(worldFilter(keywords, content))

但是动动脑大家就会发现,这种做法在文本和敏感词库非常庞大的前提下,会有很严重的性能问题。例如我将代码进行修改,进行基本的性能测试:

import time

def worldFilter(keywords, text):
    for eve in keywords:
        text = text.replace(eve, "***")
    return text
keywords =[ "关键词" + str(i) for i in range(0,10000)]
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" * 1000
startTime = time.time()
worldFilter(keywords, content)
print(time.time()-startTime)

此时的输出结果是:0.12426114082336426,可以看到性能非常差。

正则表达方法

与其用replace,还不如通过正则表达re.sub来的更加快速。

import time
import re
def worldFilter(keywords, text):
     return re.sub("|".join(keywords), "***", text)
keywords =[ "关键词" + str(i) for i in range(0,10000)]
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" * 1000
startTime = time.time()
worldFilter(keywords, content)
print(time.time()-startTime)

我们同样增加性能测试,按照上面的方法进行改造测试,输出结果是0.24773502349853516。通过这样的例子,我们可以发现,其性能磣韩剧并不大,但是实际上随着文本量增加,正则表达这种做法在性能层面会变高很多。

DFA过滤敏感词

这种方法相对来说效率会更高一些。例如,我们认为坏人,坏孩子,坏蛋是敏感词,则他们的树关系可以表达:

Serverless 实战:3 分钟实现文本敏感词过滤

用DFA字典来表示:

{
    '坏': {
        '蛋': {
            '\x00': 0
        }, 
        '人': {
            '\x00': 0
        }, 
        '孩': {
            '子': {
                '\x00': 0
            }
        }
    }
}

使用这种树表示问题最大的好处就是可以降低检索次数,提高检索效率,基本代码实现:

import time

class DFAFilter(object):
    def __init__(self):
        self.keyword_chains = {}  # 关键词链表
        self.delimit = '\x00'  # 限定

    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                chars = str(keyword).strip().lower()  # 关键词英文变为小写
                if not chars:  # 如果关键词为空直接返回
                    return
                level = self.keyword_chains
                for i in range(len(chars)):
                    if chars[i] in level:
                        level = level[chars[i]]
                    else:
                        if not isinstance(level, dict):
                            break
                        for j in range(i, len(chars)):
                            level[chars[j]] = {}
                            last_level, last_char = level, chars[j]
                            level = level[chars[j]]
                        last_level[last_char] = {self.delimit: 0}
                        break
                if i == len(chars) - 1:
                    level[self.delimit] = 0

    def filter(self, message, repl="*"):
        message = message.lower()
        ret = []
        start = 0
        while start < len(message):
            level = self.keyword_chains
            step_ins = 0
            for char in message[start:]:
                if char in level:
                    step_ins += 1
                    if self.delimit not in level[char]:
                        level = level[char]
                    else:
                        ret.append(repl * step_ins)
                        start += step_ins - 1
                        break
                else:
                    ret.append(message[start])
                    break
            else:
                ret.append(message[start])
            start += 1

        return ''.join(ret)



gfw = DFAFilter()
gfw.parse( "./sensitive_words")
content = "这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。" * 1000
startTime = time.time()
result = gfw.filter(content)
print(time.time()-startTime)

这里我们的字典库是:

with open("./sensitive_words", 'w') as f:
    f.write("\n".join( [ "关键词" + str(i) for i in range(0,10000)]))

执行结果:

0.06450581550598145

可以看到性能进一步提升。

AC自动机过滤敏感词算法

接下来,我们来看一下 AC自动机过滤敏感词算法:

AC自动机:一个常见的例子就是给出n个单词,再给出一段包含m个字符的文章,让你找出有多少个单词在文章里出现过。

简单地讲,AC自动机就是字典树+kmp算法+失配指针

代码实现:

import time
class Node(object):
    def __init__(self):
        self.next = {}
        self.fail = None
        self.isWord = False
        self.word = ""


class AcAutomation(object):

    def __init__(self):
        self.root = Node()

    # 查找敏感词函数
    def search(self, content):
        p = self.root
        result = []
        currentposition = 0

        while currentposition < len(content):
            word = content[currentposition]
            while word in p.next == False and p != self.root:
                p = p.fail

            if word in p.next:
                p = p.next[word]
            else:
                p = self.root

            if p.isWord:
                result.append(p.word)
                p = self.root
            currentposition += 1
        return result

    # 加载敏感词库函数
    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                temp_root = self.root
                for char in str(keyword).strip():
                    if char not in temp_root.next:
                        temp_root.next[char] = Node()
                    temp_root = temp_root.next[char]
                temp_root.isWord = True
                temp_root.word = str(keyword).strip()

    # 敏感词替换函数
    def wordsFilter(self, text):
        """
        :param ah: AC自动机
        :param text: 文本
        :return: 过滤敏感词之后的文本
        """
        result = list(set(self.search(text)))
        for x in result:
            m = text.replace(x, '*' * len(x))
            text = m
        return text


acAutomation = AcAutomation()
acAutomation.parse('./sensitive_words')
startTime = time.time()
print(acAutomation.wordsFilter("这是一个关键词替换的例子,这里涉及到了关键词1还有关键词2,最后还会有关键词3。"*1000))
print(time.time()-startTime)

词库同样是:

with open("./sensitive_words", 'w') as f:
    f.write("\n".join( [ "关键词" + str(i) for i in range(0,10000)]))

使用上面的方法,测试结果为0.017391204833984375

敏感词过滤方法小结

可以看到这个所有算法中,在上述的基本算法中DFA过滤敏感词性能最高,但是实际上,对于后两者算法,并没有谁一定更好,可能某些时候,AC自动机过滤敏感词算法会得到更高的性能,所以在生产生活中,推荐时候用两者,可以根据自己的具体业务需要来做。

实现敏感词过滤API

将代码部署到Serverless架构上,可以选择API网关与函数计算进行结合,以AC自动机过滤敏感词算法为例:我们只需要增加是几行代码就好,完整代码如下:

# -*- coding:utf-8 -*-

import json, uuid


class Node(object):
    def __init__(self):
        self.next = {}
        self.fail = None
        self.isWord = False
        self.word = ""


class AcAutomation(object):

    def __init__(self):
        self.root = Node()

    # 查找敏感词函数
    def search(self, content):
        p = self.root
        result = []
        currentposition = 0

        while currentposition < len(content):
            word = content[currentposition]
            while word in p.next == False and p != self.root:
                p = p.fail

            if word in p.next:
                p = p.next[word]
            else:
                p = self.root

            if p.isWord:
                result.append(p.word)
                p = self.root
            currentposition += 1
        return result

    # 加载敏感词库函数
    def parse(self, path):
        with open(path, encoding='utf-8') as f:
            for keyword in f:
                temp_root = self.root
                for char in str(keyword).strip():
                    if char not in temp_root.next:
                        temp_root.next[char] = Node()
                    temp_root = temp_root.next[char]
                temp_root.isWord = True
                temp_root.word = str(keyword).strip()

    # 敏感词替换函数
    def wordsFilter(self, text):
        """
        :param ah: AC自动机
        :param text: 文本
        :return: 过滤敏感词之后的文本
        """
        result = list(set(self.search(text)))
        for x in result:
            m = text.replace(x, '*' * len(x))
            text = m
        return text


def response(msg, error=False):
    return_data = {
        "uuid": str(uuid.uuid1()),
        "error": error,
        "message": msg
    }
    print(return_data)
    return return_data


acAutomation = AcAutomation()
path = './sensitive_words'
acAutomation.parse(path)


def main_handler(event, context):
    try:
        sourceContent = json.loads(event["body"])["content"]
        return response({
            "sourceContent": sourceContent,
            "filtedContent": acAutomation.wordsFilter(sourceContent)
        })
    except Exception as e:
        return response(str(e), True)

最后,为了方便本地测试,我们可以增加:

def test():
    event = {
        "requestContext": {
            "serviceId": "service-f94sy04v",
            "path": "/test/{path}",
            "httpMethod": "POST",
            "requestId": "c6af9ac6-7b61-11e6-9a41-93e8deadbeef",
            "identity": {
                "secretId": "abdcdxxxxxxxsdfs"
            },
            "sourceIp": "14.17.22.34",
            "stage": "release"
        },
        "headers": {
            "Accept-Language": "en-US,en,cn",
            "Accept": "text/html,application/xml,application/json",
            "Host": "service-3ei3tii4-251000691.ap-guangzhou.apigateway.myqloud.com",
            "User-Agent": "User Agent String"
        },
        "body": "{\"content\":\"这是一个测试的文本,我也就呵呵了\"}",
        "pathParameters": {
            "path": "value"
        },
        "queryStringParameters": {
            "foo": "bar"
        },
        "headerParameters": {
            "Refer": "10.0.2.14"
        },
        "stageVariables": {
            "stage": "release"
        },
        "path": "/test/value",
        "queryString": {
            "foo": "bar",
            "bob": "alice"
        },
        "httpMethod": "POST"
    }
    print(main_handler(event, None))


if __name__ == "__main__":
    test()

完成之后,我们就可以测试运行一下,例如我的字典是:

呵呵
测试

执行之后结果:

{'uuid': '9961ae2a-5cfc-11ea-a7c2-acde48001122', 'error': False, 'message': {'sourceContent': '这是一个测试的文本,我也就呵呵了', 'filtedContent': '这是一个**的文本,我也就**了'}}

接下来,我们将代码部署到云端,新建serverless.yaml:

sensitive_word_filtering:
  component: "@serverless/tencent-scf"
  inputs:
    name: sensitive_word_filtering
    codeUri: ./
    exclude:
      - .gitignore
      - .git/**
      - .serverless
      - .env
    handler: index.main_handler
    runtime: Python3.6
    region: ap-beijing
    description: 敏感词过滤
    memorySize: 64
    timeout: 2
    events:
      - apigw:
          name: serverless
          parameters:
            environment: release
            endpoints:
              - path: /sensitive_word_filtering
                description: 敏感词过滤
                method: POST
                enableCORS: true
                param:
                  - name: content
                    position: BODY
                    required: 'FALSE'
                    type: string
                    desc: 待过滤的句子

然后通过sls --debug进行部署,部署结果:

Serverless 实战:3 分钟实现文本敏感词过滤

最后,通过PostMan进行测试:

Serverless 实战:3 分钟实现文本敏感词过滤

总结

敏感词过滤是目前非常常见的需求/技术,通过敏感词过滤,我们可以在一定程度上降低恶意言语或者违规言论的出现,在上述实践过程,有以下两点内容:

  • 对于敏感词库额获得问题:Github上有很多,可以自行搜索下载,因为敏感词词库里面有很多敏感词,所以我也不能直接放在这个上面供大家使用,所以还需要大家自行在Github上搜索使用;
  • 这个API使用场景的问题:完全可以放在我们的社区跟帖系统/留言评论系统/博客发布系统中,防止出现敏感词汇,可以降低不必要的麻烦出现。

Serverless Framework 30 天试用计划

我们诚邀您来体验最便捷的 Serverless 开发和部署方式。在试用期内,相关联的产品及服务均提供免费资源和专业的技术支持,帮助您的业务快速、便捷地实现 Serverless!

详情可查阅:Serverless Framework 试用计划

One More Thing

3 秒你能做什么?喝一口水,看一封邮件,还是 —— 部署一个完整的 Serverless 应用?

复制链接至 PC 浏览器访问:https://serverless.cloud.tencent.com/deploy/express

3 秒极速部署,立即体验史上最快的 Serverless HTTP 实战开发!

传送门:

欢迎访问:Serverless 中文网,您可以在 最佳实践 里体验更多关于 Serverless 应用的开发!


推荐阅读:《Serverless 架构:从原理、设计到项目实战》

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Karen110 Karen110
3年前
一篇文章带你了解JavaScript日期
日期对象允许您使用日期(年、月、日、小时、分钟、秒和毫秒)。一、JavaScript的日期格式一个JavaScript日期可以写为一个字符串:ThuFeb02201909:59:51GMT0800(中国标准时间)或者是一个数字:1486000791164写数字的日期,指定的毫秒数自1970年1月1日00:00:00到现在。1\.显示日期使用
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
计算机视觉与信息取证技术讲解
今晚20:0022:00人工智能技术与自信计算机视觉就是用各种成像系统代替视觉器官作为输入敏感手段,由计算机来代替大脑完成处理和解释。计算机视觉的最终研究目标就是使计算机能象人那样通过视觉观察和理解世界,具有自主适应环境的能力。要经过长期的努力才能达到的目标。因此,在实现最终目标以前,人们努力的中期目标是建立一种视觉系统,这个系统能依据视觉敏感和反馈的某
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这