OpenCV 应用(1)卡尔曼滤波跟踪

Stella981
• 阅读 1128

0 卡尔曼OPENCV 预测鼠标位置

卡尔曼滤波不要求信号和噪声都是平稳过程的假设条件。对于每个时刻的系统扰动和观测误差(即噪声),只要对它们的统计性质作某些适当的假定,通过对含有噪声的观测信号进行处理,就能在平均的意义上,求得误差为最小的真实信号的估计值。

因此,自从卡尔曼滤波理论问世以来,在通信系统、电力系统、航空航天、环境污染控制、工业控制、雷达信号处理等许多部门都得到了应用,取得了许多成功应用的成果。卡尔曼滤波器会对含有噪声的输入数据流(比如计算机视觉中的视频输入)进行递归操作,并产生底层系统状态(比如视频中的位置)在统计意义上的最优估计。

卡尔曼滤波算法分为两个阶段: 

预测阶段:卡尔曼滤波器使用由当前点计算的协方差来估计目标的新位置; 
更新阶段:卡尔曼滤波器记录目标的位置,并为下一次循环计算修正协方差。

 OpenCV 应用(1)卡尔曼滤波跟踪

第一版

#include <cv.h>  
#include <cxcore.h>  
#include <highgui.h>  
  
#include <cmath>  
#include <vector>  
#include <iostream>  
using namespace std;  
  
const int winHeight=600;  
const int winWidth=800;  
  
  
CvPoint mousePosition=cvPoint(winWidth>>1,winHeight>>1);  
  
//mouse event callback  
void mouseEvent(int event, int x, int y, int flags, void *param )  
{  
    if (event==CV_EVENT_MOUSEMOVE) {  
        mousePosition=cvPoint(x,y);  
    }  
}  
  
int main (void)  
{  
    //1.kalman filter setup  
    const int stateNum=4;  
    const int measureNum=2;  
    CvKalman* kalman = cvCreateKalman( stateNum, measureNum, 0 );//state(x,y,detaX,detaY)  
    CvMat* process_noise = cvCreateMat( stateNum, 1, CV_32FC1 );  
    CvMat* measurement = cvCreateMat( measureNum, 1, CV_32FC1 );//measurement(x,y)  
    CvRNG rng = cvRNG(-1);  
    float A[stateNum][stateNum] ={//transition matrix  
        1,0,1,0,  
        0,1,0,1,  
        0,0,1,0,  
        0,0,0,1  
    };  
  
    memcpy( kalman->transition_matrix->data.fl,A,sizeof(A));  
    cvSetIdentity(kalman->measurement_matrix,cvRealScalar(1) );  
    cvSetIdentity(kalman->process_noise_cov,cvRealScalar(1e-5));  
    cvSetIdentity(kalman->measurement_noise_cov,cvRealScalar(1e-1));  
    cvSetIdentity(kalman->error_cov_post,cvRealScalar(1));  
    //initialize post state of kalman filter at random  
    cvRandArr(&rng,kalman->state_post,CV_RAND_UNI,cvRealScalar(0),cvRealScalar(winHeight>winWidth?winWidth:winHeight));  
  
    CvFont font;  
    cvInitFont(&font,CV_FONT_HERSHEY_SCRIPT_COMPLEX,1,1);  
  
    cvNamedWindow("kalman");  
    cvSetMouseCallback("kalman",mouseEvent);  
    IplImage* img=cvCreateImage(cvSize(winWidth,winHeight),8,3);  
    while (1){  
        //2.kalman prediction  
        const CvMat* prediction=cvKalmanPredict(kalman,0);  
        CvPoint predict_pt=cvPoint((int)prediction->data.fl[0],(int)prediction->data.fl[1]);  
  
        //3.update measurement  
        measurement->data.fl[0]=(float)mousePosition.x;  
        measurement->data.fl[1]=(float)mousePosition.y;  
  
        //4.update  
        cvKalmanCorrect( kalman, measurement );       
  
        //draw   
        cvSet(img,cvScalar(255,255,255,0));  
        cvCircle(img,predict_pt,5,CV_RGB(0,255,0),3);//predicted point with green  
        cvCircle(img,mousePosition,5,CV_RGB(255,0,0),3);//current position with red  
        char buf[256];  
        sprintf_s(buf,256,"predicted position:(%3d,%3d)",predict_pt.x,predict_pt.y);  
        cvPutText(img,buf,cvPoint(10,30),&font,CV_RGB(0,0,0));  
        sprintf_s(buf,256,"current position :(%3d,%3d)",mousePosition.x,mousePosition.y);  
        cvPutText(img,buf,cvPoint(10,60),&font,CV_RGB(0,0,0));  
          
        cvShowImage("kalman", img);  
        int key=cvWaitKey(3);  
        if (key==27){//esc     
            break;     
        }  
    }        
  
    cvReleaseImage(&img);  
    cvReleaseKalman(&kalman);  
    return 0;  
}

第二版程序

#include "opencv2/video/tracking.hpp"  
#include "opencv2/highgui/highgui.hpp"  
#include <stdio.h>  
using namespace cv;
using namespace std;

const int winHeight = 600;
const int winWidth = 800;


Point mousePosition = Point(winWidth >> 1, winHeight >> 1);

//mouse event callback  
void mouseEvent(int event, int x, int y, int flags, void *param)
{
    if (event == CV_EVENT_MOUSEMOVE) {
        mousePosition = Point(x, y);
    }
}

int main(void)
{
    RNG rng;
    //1.kalman filter setup  
    const int stateNum = 4;                                      //状态值4×1向量(x,y,△x,△y)  
    const int measureNum = 2;                                    //测量值2×1向量(x,y)    
    KalmanFilter KF(stateNum, measureNum, 0);

    KF.transitionMatrix = *(Mat_<float>(4, 4) << 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1);  //转移矩阵A  
    setIdentity(KF.measurementMatrix);                                             //测量矩阵H  
    setIdentity(KF.processNoiseCov, Scalar::all(1e-5));                            //系统噪声方差矩阵Q  
    setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));                        //测量噪声方差矩阵R  
    setIdentity(KF.errorCovPost, Scalar::all(1));                                  //后验错误估计协方差矩阵P  
    rng.fill(KF.statePost, RNG::UNIFORM, 0, winHeight>winWidth ? winWidth : winHeight);   //初始状态值x(0)  
    Mat measurement = Mat::zeros(measureNum, 1, CV_32F);                           //初始测量值x'(0),因为后面要更新这个值,所以必须先定义  

    namedWindow("kalman");
    setMouseCallback("kalman", mouseEvent);

    Mat image(winHeight, winWidth, CV_8UC3, Scalar(0));

    while (1)
    {
        //2.kalman prediction  
        Mat prediction = KF.predict();
        Point predict_pt = Point(prediction.at<float>(0), prediction.at<float>(1));   //预测值(x',y')  

        //3.update measurement  
        measurement.at<float>(0) = (float)mousePosition.x;
        measurement.at<float>(1) = (float)mousePosition.y;

        //4.update  
        KF.correct(measurement);

        //draw   
        image.setTo(Scalar(255, 255, 255, 0));
        circle(image, predict_pt, 5, Scalar(0, 255, 0), 3);    //predicted point with green  
        circle(image, mousePosition, 5, Scalar(255, 0, 0), 3); //current position with red          

        char buf[256];
        sprintf_s(buf, 256, "predicted position:(%3d,%3d)", predict_pt.x, predict_pt.y);
        putText(image, buf, Point(10, 30), CV_FONT_HERSHEY_SCRIPT_COMPLEX, 1, Scalar(0, 0, 0), 1, 8);
        sprintf_s(buf, 256, "current position :(%3d,%3d)", mousePosition.x, mousePosition.y);
        putText(image, buf, cvPoint(10, 60), CV_FONT_HERSHEY_SCRIPT_COMPLEX, 1, Scalar(0, 0, 0), 1, 8);

        imshow("kalman", image);
        int key = waitKey(3);
        if (key == 27){//esc     
            break;
        }
    }
}

1 OPENCV自带样例

 //状态坐标白色
drawCross(statePt, Scalar(255, 255, 255), 3);
//测量坐标蓝色
drawCross(measPt, Scalar(0, 0, 255), 3);
//预测坐标绿色
drawCross(predictPt, Scalar(0, 255, 0), 3);

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <stdio.h>

using namespace cv;

static inline Point calcPoint(Point2f center, double R, double angle)
{
    return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}



int main2(int, char**)
{
    /*
    使用kalma步骤一
    下面语句到for前都是kalman的初始化过程,一般在使用kalman这个类时需要初始化的值有:
    转移矩阵,测量矩阵,过程噪声协方差,测量噪声协方差,后验错误协方差矩阵,
    前一状态校正后的值,当前观察值
    */


    Mat img(500, 500, CV_8UC3);
    KalmanFilter KF(2, 1, 0);
    Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
    Mat processNoise(2, 1, CV_32F);
    Mat measurement = Mat::zeros(1, 1, CV_32F);
    char code = (char)-1;

    for (;;)
    {
        randn(state, Scalar::all(0), Scalar::all(0.1));//产生均值为0,标准差为0.1的二维高斯列向量
        KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);//转移矩阵为[1,1;0,1]

        //函数setIdentity是给参数矩阵对角线赋相同值,默认对角线值值为1
        setIdentity(KF.measurementMatrix);
        setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//系统过程噪声方差矩阵
        setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//测量过程噪声方差矩阵
        setIdentity(KF.errorCovPost, Scalar::all(1));//后验错误估计协方差矩阵

        //statePost为校正状态,其本质就是前一时刻的状态
        randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));

        for (;;)
        {
            Point2f center(img.cols*0.5f, img.rows*0.5f);
            float R = img.cols / 3.f;
            //state中存放起始角,state为初始状态
            double stateAngle = state.at<float>(0);
            Point statePt = calcPoint(center, R, stateAngle);


            /*
            使用kalma步骤二
            调用kalman这个类的predict方法得到状态的预测值矩阵
            */


            Mat prediction = KF.predict();
            //用kalman预测的是角度
            double predictAngle = prediction.at<float>(0);
            Point predictPt = calcPoint(center, R, predictAngle);

            randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));

            // generate measurement
            //带噪声的测量
            measurement += KF.measurementMatrix*state;

            double measAngle = measurement.at<float>(0);
            Point measPt = calcPoint(center, R, measAngle);

            // plot points
            //这个define语句是画2条线段(线长很短),其实就是画一个“X”叉符号

#define drawCross( center, color, d )                                 \
                line( img, Point( center.x - d, center.y - d ),                \
                             Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
                line( img, Point( center.x + d, center.y - d ),                \
                             Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )

            img = Scalar::all(0);
            //状态坐标白色
            drawCross(statePt, Scalar(255, 255, 255), 3);
            //测量坐标蓝色
            drawCross(measPt, Scalar(0, 0, 255), 3);
            //预测坐标绿色
            drawCross(predictPt, Scalar(0, 255, 0), 3);
            //真实值和测量值之间用红色线连接起来
            line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
            //真实值和估计值之间用黄色线连接起来
            line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);


            /*
            使用kalma步骤三
            调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
            */

            if (theRNG().uniform(0, 4) != 0)
                KF.correct(measurement);

            randn(processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
            //不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
            state = KF.transitionMatrix*state + processNoise;

            imshow("Kalman", img);
            code = (char)waitKey(100);

            if (code > 0)
                break;
        }
        if (code == 27 || code == 'q' || code == 'Q')
            break;
    }

    return 0;
}

  2 

白色真实位置

蓝色观测位置

绿色实际位置

版本一

OpenCV 应用(1)卡尔曼滤波跟踪

 OpenCV 应用(1)卡尔曼滤波跟踪

//#include <stdafx.h>
#include <cv.h>  
#include <highgui.h>  
#include <stdio.h>  

int main()
{
    cvNamedWindow("Kalman", 1);
    CvRandState random;//创建随机  
    cvRandInit(&random, 0, 1, -1, CV_RAND_NORMAL);
    IplImage * image = cvCreateImage(cvSize(600, 450), 8, 3);
    CvKalman * kalman = cvCreateKalman(4, 2, 0);//状态变量4维,x、y坐标和在x、y方向上的速度,测量变量2维,x、y坐标  

    CvMat * xK = cvCreateMat(4, 1, CV_32FC1);//初始化状态变量,坐标为(40,40),x、y方向初速度分别为10、10  
    xK->data.fl[0] = 40.;
    xK->data.fl[1] = 40;
    xK->data.fl[2] = 10;
    xK->data.fl[3] = 10;

    const float F[] = { 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1 };//初始化传递矩阵 [1  0  1  0]  
    //               [0  1  0  1]  
    //               [0  0  1  0]  
    //               [0  0  0  1]  
    memcpy(kalman->transition_matrix->data.fl, F, sizeof(F));



    CvMat * wK = cvCreateMat(4, 1, CV_32FC1);//过程噪声  
    cvZero(wK);

    CvMat * zK = cvCreateMat(2, 1, CV_32FC1);//测量矩阵2维,x、y坐标  
    cvZero(zK);

    CvMat * vK = cvCreateMat(2, 1, CV_32FC1);//测量噪声  
    cvZero(vK);

    cvSetIdentity(kalman->measurement_matrix, cvScalarAll(1));//初始化测量矩阵H=[1  0  0  0]  
    //                [0  1  0  0]  
    cvSetIdentity(kalman->process_noise_cov, cvScalarAll(1e-1));/*过程噪声____设置适当数值,
                                                                增大目标运动的随机性,
                                                                但若设置的很大,则系统不能收敛,
                                                                即速度越来越快*/
    cvSetIdentity(kalman->measurement_noise_cov, cvScalarAll(10));/*观测噪声____故意将观测噪声设置得很大,
                                                                  使之测量结果和预测结果同样存在误差*/
    cvSetIdentity(kalman->error_cov_post, cvRealScalar(1));/*后验误差协方差*/
    cvRand(&random, kalman->state_post);

    CvMat * mK = cvCreateMat(1, 1, CV_32FC1);  //反弹时外加的随机化矩阵  


    while (1){
        cvZero(image);
        cvRectangle(image, cvPoint(30, 30), cvPoint(570, 420), CV_RGB(255, 255, 255), 2);//绘制目标弹球的“撞击壁”  
        const CvMat * yK = cvKalmanPredict(kalman, 0);//计算预测位置  
        cvRandSetRange(&random, 0, sqrt(kalman->measurement_noise_cov->data.fl[0]), 0);
        cvRand(&random, vK);//设置随机的测量误差  
        cvMatMulAdd(kalman->measurement_matrix, xK, vK, zK);//zK=H*xK+vK  
        cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*xK, float, 0, 0)), cvRound(CV_MAT_ELEM(*xK, float, 1, 0))),
            4, CV_RGB(255, 255, 255), 2);//白圈,真实位置  
        cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*yK, float, 0, 0)), cvRound(CV_MAT_ELEM(*yK, float, 1, 0))),
            4, CV_RGB(0, 255, 0), 2);//绿圈,预估位置  
        cvCircle(image, cvPoint(cvRound(CV_MAT_ELEM(*zK, float, 0, 0)), cvRound(CV_MAT_ELEM(*zK, float, 1, 0))),
            4, CV_RGB(0, 0, 255), 2);//蓝圈,观测位置  

        cvRandSetRange(&random, 0, sqrt(kalman->process_noise_cov->data.fl[0]), 0);
        cvRand(&random, wK);//设置随机的过程误差  
        cvMatMulAdd(kalman->transition_matrix, xK, wK, xK);//xK=F*xK+wK  

        if (cvRound(CV_MAT_ELEM(*xK, float, 0, 0))<30){  //当撞击到反弹壁时,对应轴方向取反外加随机化  
            cvRandSetRange(&random, 0, sqrt(1e-1), 0);
            cvRand(&random, mK);
            xK->data.fl[2] = 10 + CV_MAT_ELEM(*mK, float, 0, 0);
        }
        if (cvRound(CV_MAT_ELEM(*xK, float, 0, 0))>570){
            cvRandSetRange(&random, 0, sqrt(1e-2), 0);
            cvRand(&random, mK);
            xK->data.fl[2] = -(10 + CV_MAT_ELEM(*mK, float, 0, 0));
        }
        if (cvRound(CV_MAT_ELEM(*xK, float, 1, 0))<30){
            cvRandSetRange(&random, 0, sqrt(1e-1), 0);
            cvRand(&random, mK);
            xK->data.fl[3] = 10 + CV_MAT_ELEM(*mK, float, 0, 0);
        }
        if (cvRound(CV_MAT_ELEM(*xK, float, 1, 0))>420){
            cvRandSetRange(&random, 0, sqrt(1e-3), 0);
            cvRand(&random, mK);
            xK->data.fl[3] = -(10 + CV_MAT_ELEM(*mK, float, 0, 0));
        }

        printf("%f_____%f\n", xK->data.fl[2], xK->data.fl[3]);


        cvShowImage("Kalman", image);

        cvKalmanCorrect(kalman, zK);


        if (cvWaitKey(100) == 'e'){
            break;
        }
    }


    cvReleaseImage(&image);/*释放图像*/
    cvDestroyAllWindows();
}

本版二

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"

#include <stdio.h>

using namespace cv;

static inline Point calcPoint(Point2f center, double R, double angle)
{
    return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
}



int main2(int, char**)
{
    /*
    使用kalma步骤一
    下面语句到for前都是kalman的初始化过程,一般在使用kalman这个类时需要初始化的值有:
    转移矩阵,测量矩阵,过程噪声协方差,测量噪声协方差,后验错误协方差矩阵,
    前一状态校正后的值,当前观察值
    */


    Mat img(500, 500, CV_8UC3);
    KalmanFilter KF(2, 1, 0);
    Mat state(2, 1, CV_32F); /* (phi, delta_phi) */
    Mat processNoise(2, 1, CV_32F);
    Mat measurement = Mat::zeros(1, 1, CV_32F);
    char code = (char)-1;

    for (;;)
    {
        randn(state, Scalar::all(0), Scalar::all(0.1));//产生均值为0,标准差为0.1的二维高斯列向量
        KF.transitionMatrix = *(Mat_<float>(2, 2) << 1, 1, 0, 1);//转移矩阵为[1,1;0,1]

        //函数setIdentity是给参数矩阵对角线赋相同值,默认对角线值值为1
        setIdentity(KF.measurementMatrix);
        setIdentity(KF.processNoiseCov, Scalar::all(1e-5));//系统过程噪声方差矩阵
        setIdentity(KF.measurementNoiseCov, Scalar::all(1e-1));//测量过程噪声方差矩阵
        setIdentity(KF.errorCovPost, Scalar::all(1));//后验错误估计协方差矩阵

        //statePost为校正状态,其本质就是前一时刻的状态
        randn(KF.statePost, Scalar::all(0), Scalar::all(0.1));

        for (;;)
        {
            Point2f center(img.cols*0.5f, img.rows*0.5f);
            float R = img.cols / 3.f;
            //state中存放起始角,state为初始状态
            double stateAngle = state.at<float>(0);
            Point statePt = calcPoint(center, R, stateAngle);


            /*
            使用kalma步骤二
            调用kalman这个类的predict方法得到状态的预测值矩阵
            */


            Mat prediction = KF.predict();
            //用kalman预测的是角度
            double predictAngle = prediction.at<float>(0);
            Point predictPt = calcPoint(center, R, predictAngle);

            randn(measurement, Scalar::all(0), Scalar::all(KF.measurementNoiseCov.at<float>(0)));

            // generate measurement
            //带噪声的测量
            measurement += KF.measurementMatrix*state;

            double measAngle = measurement.at<float>(0);
            Point measPt = calcPoint(center, R, measAngle);

            // plot points
            //这个define语句是画2条线段(线长很短),其实就是画一个“X”叉符号

#define drawCross( center, color, d )                                 \
                line( img, Point( center.x - d, center.y - d ),                \
                             Point( center.x + d, center.y + d ), color, 1, CV_AA, 0); \
                line( img, Point( center.x + d, center.y - d ),                \
                             Point( center.x - d, center.y + d ), color, 1, CV_AA, 0 )

            img = Scalar::all(0);
            //状态坐标白色
            drawCross(statePt, Scalar(255, 255, 255), 3);
            //测量坐标蓝色
            drawCross(measPt, Scalar(0, 0, 255), 3);
            //预测坐标绿色
            drawCross(predictPt, Scalar(0, 255, 0), 3);
            //真实值和测量值之间用红色线连接起来
            line(img, statePt, measPt, Scalar(0, 0, 255), 3, CV_AA, 0);
            //真实值和估计值之间用黄色线连接起来
            line(img, statePt, predictPt, Scalar(0, 255, 255), 3, CV_AA, 0);


            /*
            使用kalma步骤三
            调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
            */

            if (theRNG().uniform(0, 4) != 0)
                KF.correct(measurement);

            randn(processNoise, Scalar(0), Scalar::all(sqrt(KF.processNoiseCov.at<float>(0, 0))));
            //不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
            state = KF.transitionMatrix*state + processNoise;

            imshow("Kalman", img);
            code = (char)waitKey(100);

            if (code > 0)
                break;
        }
        if (code == 27 || code == 'q' || code == 'Q')
            break;
    }

    return 0;
}
点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
徐小夕 徐小夕
4年前
笛卡尔乘积的javascript版实现和应用
笛卡尔乘积是指在数学中,两个集合X和Y的笛卡尓积,又称直积,表示为X×Y,第一个对象是X的成员而第二个对象是Y的所有可能有序对的其中一个成员。例子假设集合A{a,b},集合B{0,1,2},则两个集合的笛卡尔积为{(a,0),(a,1),(a,2),(b,0),(b,1),(b,2)}。(https:
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
高端航姿参考系统(AHRS)究竟好在哪?
AHRS(AttitudeandHeadingReferenceSystem,,俗称姿态参考系统,可以为飞行器提供精确可靠的姿态和航向等导航信息。该产品由加速度传感器、陀螺仪和地磁传感器等组成。通常,卡尔曼滤波器被用作姿态和姿态计算的多传感器数据融合单元。
Wesley13 Wesley13
3年前
java 哈夫曼编码反编码的实现
//哈弗曼编码的实现类publicclassHffmanCoding{privateintcharsAndWeight;//0是字符,1存放的是字符的权值(次数)privateinthfmcoding;//存放哈弗曼树privateinti0;
Stella981 Stella981
3年前
Android OpenCV(二十):高斯滤波
高斯滤波高斯滤波是一种线性平滑滤波,适用于消除高斯噪声,广泛应用于图像处理的减噪过程。通俗的讲,高斯滤波就是对整幅图像进行加权平均的过程,每一个像素点的值,都由其本身和邻域内的其他像素值经过加权平均后得到。高斯滤波的具体操作是:用一个模板(或称卷积、掩模)扫描图像中的每一个像素,用模板确定的邻域内像素的加权平均灰度值去替代模板中心像素点的值
Stella981 Stella981
3年前
Python OpenCV学习笔记之:图像滤波处理
\\coding:utf8\图像滤波'''图像处理也支持低通滤波(LPF)和高通滤波(HPF)处理OpenCV提供filter2D函数对图像进行滤波处理'''importcv2ascvimportnumpyasnpimportmatplotlib.pyplotasplt读取图像img
先进的传感器可以在很大程度上纠正在正常车辆运行中的偏航错误
使用卡尔曼滤波器的高级传感器融合可以在很大程度上校正正常车辆操作中的偏航误差。中的卡尔曼滤波器可以消除俯仰和滚转陀螺仪的误差,通过测量地球重力加速度的加速度计信号可以计算俯仰和滚转。该算法跟踪并校正偏置漂移和角随机游走(ARW)误差。零偏不稳定性(BI)也
赵颜 赵颜
10个月前
滤波器和缓冲器用于单通道6阶高清视频滤波驱动电路,可提高视频信号性能——D1675
D1675单电源工作电压为2.5V到5V,是一款高清视频信号译码、编码的滤波器和缓冲器。与使用分立元件的传统设计相比,D1675更能节省PCB板面积,并降低成本以及提高视频信号性能。D1675集成了一个直流耦合输入缓冲器、一个消除带外噪声的视频编码器和
赵颜 赵颜
9个月前
应用方案 | D1675单通道 6 阶高清视频滤波驱动电路,可减小寄生电容和噪声。
1、概述:D1675单电源工作电压为2.5V到5V,是一款高清视频信号译码、编码的滤波器和缓冲器。与使用分立元件的传统设计相比,D1675更能节省PCB板面积,并降低成本以及提高视频信号性能。D1675集成了一个直流耦合输入缓冲器、一个消除带外噪声的视