Kylin、Druid、ClickHouse 核心技术对比

Stella981
• 阅读 951

文章作者:吴建超

内容来源:jackywoo.cn

导读:Kylin、Druid、ClickHouse是目前主流的OLAP引擎,本文尝试从数据模型和索引结构两个角度,分析这几个引擎的核心技术,并做简单对比。在阅读本文之前希望能对Kylin、Druid、ClickHouse有所理解。

01

Kylin数据模型

Kylin的数据模型本质上是将二维表(Hive表)转换为Cube,然后将Cube存储到HBase表中,也就是两次转换。

第一次转换,其实就是传统数据库的Cube化,Cube由CuboId组成,下图每个节点都被称为一个CuboId,CuboId表示固定列的数据数据集合,比如“ AB” 两个维度组成的CuboId的数据集合等价于以下SQL的数据集合:

select A, B, sum(M), sum(N) from table group by A, B

Kylin、Druid、ClickHouse 核心技术对比

第二次转换,是将Cube中的数据存储到HBase中,转换的时候CuboId和维度信息序列化到rowkey,度量列组成列簇。在转换的时候数据进行了预聚合。下图展示了Cube数据在HBase中的存储方式。

Kylin、Druid、ClickHouse 核心技术对比

02

Kylin索引结构

因为Kylin将数据存储到HBase中,所以kylin的数据索引就是HBase的索引。HBase的索引是简化版本的B+树,相比于B+树,HFile没有对数据文件的更新操作。

HFile的索引是按照rowkey排序的聚簇索引,索引树一般为二层或者三层,索引节点比MySQL的B+树大,默认是64KB。数据查找的时候通过树形结构定位到节点,节点内部数据是按照rowkey有序的,可以通过二分查找快速定位到目标。

Kylin、Druid、ClickHouse 核心技术对比

Kylin小结:适用于聚合查询场景;因为数据预聚合,Kylin可以说是最快的查询引擎(group-by查询这样的复杂查询,可能只需要扫描1条数据);kylin查询效率取决于是否命中CuboId,查询波动较大;HBase索引有点类似MySQL中的联合索引,维度在rowkey中的排序和查询维度组合对查询效率影响巨大;所以Kylin建表需要业务专家参与。

03

Druid数据模型

Druid数据模型比较简单,它将数据进行预聚合,只不过预聚合的方式与Kylin不同,kylin是Cube化,Druid的预聚合方式是将所有维度进行Group-by,可以参考下图:

Kylin、Druid、ClickHouse 核心技术对比

04

Druid索引结构

Druid索引结构使用自定义的数据结构,整体上它是一种列式存储结构,每个列独立一个逻辑文件(实际上是一个物理文件,在物理文件内部标记了每个列的start和offset)。对于维度列设计了索引,它的索引以Bitmap为核心。下图为“city”列的索引结构:

Kylin、Druid、ClickHouse 核心技术对比

首先将该列所有的唯一值排序,并生成一个字典,然后对于每个唯一值生成一个Bitmap,Bitmap的长度为数据集的总行数,每个bit代表对应的行的数据是否是该值。Bitmap的下标位置和行号是一一对应的,所以可以定位到度量列,Bitmap可以说是反向索引。同时数据结构中保留了字典编码后的所有列值,其为正向的索引。

那么查询如何使用索引呢?以以下查询为例:

select site, sum(pv) from xx where date=2020-01-01 and city='bj' group by site
  1. city列中二分查找dictionary并找到'bj'对应的bitmap

  2. 遍历city列,对于每一个字典值对应的bitmap与'bj'的bitmap做与操作

  3. 每个相与后的bitmap即为city='bj'查询条件下的site的一个group的pv的索引

  4. 通过索引在pv列中查找到相应的行,并做agg

  5. 后续计算

Druid小结:Druid适用于聚合查询场景但是不适合有超高基维度的场景;存储全维度group-by后的数据,相当于只存储了KYLIN Cube的 Base-CuboID;每个维度都有创建索引,所以每个查询都很快,并且没有类似KYLIN的巨大的查询效率波动。

05

ClickHouse索引结构(只讨论MergeTree引擎)

因为Clickhouse数据模型就是普通二维表,这里不做介绍,只讨论索引结构。整体上Clickhouse的索引也是列式索引结构,每个列一个文件。Clickhouse索引的大致思路是:首先选取部分列作为索引列,整个数据文件的数据按照索引列有序,这点类似MySQL的联合索引;其次将排序后的数据每隔8194行选取出一行,记录其索引值和序号,注意这里的序号不是行号,序号是从零开始并递增的,Clickhouse中序号被称作Mark’s number;然后对于每个列(索引列和非索引列),记录Mark’s number与对应行的数据的offset。

下图中以一个二维表(date, city, action)为例介绍了整个索引结构,其中(date,city)是索引列。

Kylin、Druid、ClickHouse 核心技术对比

那么查询如何使用索引呢?以以下查询为例:

select count(distinct action) where date=toDate(2020-01-01) and city=’bj’
  1. 二分查找primary.idx并找到对应的mark's number集合(即数据block集合)

  2. 在上一步骤中的 block中,在date和city列中查找对应的值的行号集合,并做交集,确认行号集合

  3. 将行号转换为mark's number 和 offset in block(注意这里的offset以行为单位而不是byte)

  4. 在action列中,根据mark's number和.mark文件确认数据block在bin文件中的offset,然后根据offset in block定位到具体的列值。

  5. 后续计算

该实例中包含了对于列的正反两个方向的查找过程。反向:查找date=toDate(2020-01-01) and city=’bj’数据的行号;正向:根据行号查找action列的值。对于反向查找,只有在查找条件匹配最左前缀的时候,才能剪枝掉大量数据,其它时候并不高效。

Clickhouse小结:MergeTree Family作为主要引擎系列,其中包含适合明细数据的场景和适合聚合数据的场景;Clickhouse的索引有点类似MySQL的联合索引,当查询前缀元组能命中的时候效率最高,可是一旦不能命中,几乎会扫描整个表,效率波动巨大;所以建表需要业务专家,这一点跟kylin类似。

06

小结

  • Kylin、Druid只适合聚合场景,ClickHouse适合明细和聚合场景

  • 聚合场景,查询效率排序:Kylin > Druid > ClickHouse

  • Kylin、ClickHouse建表都需要业务专家参与

  • Kylin、ClickHouse查询效率都可能产生巨大差异

  • ClickHouse在向量化方面做得的最好,Druid少量算子支持向量化、Kylin目前还不支持向量化计算。

今天的分享就到这里****,谢谢大家。

作者介绍:

吴建超,9年程序员一枚,目前专注于大数据处理和数据库技术。


在文末分享、点赞、在看,给个三连击呗~~


有热门推荐👇

本文分享自微信公众号 - 一万小时极客(coding-Hub)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这