Linux内存泄露案例分析和内存管理分享

京东云开发者
• 阅读 16

作者:京东科技 李遵举

一、问题

近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张,我们团队负责的LB服务是零售、物流、科技等业务服务的流量入口,承接上万个服务的流量转发,一旦有故障影响业务服务比较多,必须马上着手解决内存暴涨的问题。目前只是内存报警,暂时不影响业务,先将内存使用率90%以上的LB服务下线,防止内存过高导致LB服务崩溃,影响业务,运维同事密切关注相关的内存报警的消息。

二、排查过程

经过开发同学通过cat /proc/meminfo查看Slab的内核内存可能有泄漏。

$ cat /proc/meminfo
MemTotal:       65922868 kB
MemFree:         9001452 kB
...
Slab:           39242216 kB
SReclaimable:   38506072 kB
SUnreclaim:       736144 kB
....

通过slabtop命令分析slab发现内核中dentry对象占比高,考虑到dentry对象跟文件有关,Linux中一切皆可以为文件,这个可能跟socket文件有关,通过进一步排查发现LB服务上有个curl发送的HTTPS探测脚本,这个脚本存在dentry对象泄漏,并且在curl论坛上找到一篇文章确认了这个问题,这个文章说明了curl-7.19.7版本在发送HTTPS请求时,curl依赖的NSS库存在dentry泄漏的bug,我查看一下我们curl版本就是7.19.7,问题终于真相大白了!!!

$ curl -V
curl 7.19.7 (x86_64-redhat-linux-gnu) libcurl/7.19.7 NSS/3.15.3 zlib/1.2.3 libidn/1.18 libssh2/1.4.2
Protocols: tftp ftp telnet dict ldap ldaps http file https ftps scp sftp
Features: GSS-Negotiate IDN IPv6 Largefile NTLM SSL libz

$ rpm -aq|grep nss-
nss-util-3.16.1-3.el6.x86_64
nss-sysinit-3.16.1-14.el6.x86_64
nss-softokn-freebl-3.14.3-17.el6.x86_64
nss-softokn-3.14.3-17.el6.x86_64
nss-3.16.1-14.el6.x86_64
nss-tools-3.16.1-14.el6.x86_64

文章中介绍可以设置环境变量NSS_SDB_USE_CACHE修复这个bug,我们验证通过了这个解决方案。

三、解决方案

1、目前先将探测脚本停止,在业务流量低峰时将内存使用率超过90%的服务先通过drop_caches清理一下缓存。

2、等大促过后,探测脚本中设置环境变量NSS_SDB_USE_CACHE,彻底修复这个问题。

四、复盘和总结

这次内存暴涨的问题根本原因是curl-7.19.7依赖的NSS库存在dentry泄漏的bug导致的,探测脚本只是将这个问题暴露出来。这次问题由Linux内存泄漏引发的问题,因此以点带面再次系统学习一下Linux内存管理的知识非常有必要,对我们以后排查内存暴涨的问题非常有帮助。

1)Linux内存寻址

Linux内核主要通过虚拟内存管理进程的地址空间,内核进程和用户进程都只会分配虚拟内存,不会分配物理内存,通过内存寻址将虚拟内存与物理内存做映射。Linux内核中有三种地址,

a、逻辑地址,每个逻辑地址都由一段(segment)和偏移量(offset)组成,偏移量指明了从段开始的地方到实际地址之间的距离。

b、线性地址,又称虚拟地址,是一个32个无符号整数,32位机器内存高达4GB,通常用十六进制数字表示,Linux进程的内存一般说的都是这个内存。

c、物理地址,用于内存芯片级内存单元寻址。它们与从CPU的地址引脚发送到内存总线上的电信号对应。

Linux中的内存控制单元(MMU)通过一种称为分段单元(segmentation unit)的硬件电路把一个逻辑地址转换成线性地址,接着,第二个称为分页单元(paging unit)的硬件电路把线性地址转换成一个物理地址。

Linux内存泄露案例分析和内存管理分享

2)Linux分页机制

分页单元把线性地址转换成物理地址。线性地址被分成以固定长度为单位的组,称为(page)。页内部连续的线性地址被映射到连续的物理地址中。一般"页"既指一组线性地址,又指包含这组地址中的数据。分页单元把所有的RAM分成固定长度的页框(page frame),也成物理页。每一页框包含一个页(page),也就是说一个页框的长度与一个页的长度一致。页框是主存的一部分,因此也是一个存储区域。区分一页和一个页框是很重要的,前者只是一个数据块,可以存放任何页框或者磁盘中。把线性地址映射到物理地址的数据结构称为页表(page table)。页表存放在主存中,并在启用分页单元之前必须有内核对页表进行适当的初始化。

x86_64的Linux内核采用4级分页模型,一般一页4K,4种页表:

a、页全局目录

b、页上级目录

c、页中间目录

d、页表

页全局目录包含若干页上级目录,页上级目录又依次包含若干页中间目录的地址,而页中间目录又包含若干页表的地址。每个页表项指向一个页框。线性地址被分成5部分。

Linux内存泄露案例分析和内存管理分享

3)NUMA架构

随着CPU进入多核时代,多核CPU通过一条数据总线访问内存延迟很大,因此NUMA架构应运而生,NUMA架构全称为非一致性内存架构 (Non Uniform Memory Architecture),系统的物理内存被划分为几个节点(node),每个node绑定不同的CPU核,本地CPU核直接访问本地内存node节点延迟最小。

Linux内存泄露案例分析和内存管理分享

可以通过lscpu命令查看NUMA与CPU核的关系。

$ lscpu
Architecture:          x86_64
CPU op-mode(s):        32-bit, 64-bit
Byte Order:            Little Endian
CPU(s):                32
On-line CPU(s) list:   0-31
Thread(s) per core:    2
Core(s) per socket:    8
Socket(s):             2
NUMA node(s):          2
Vendor ID:             GenuineIntel
CPU family:            6
Model:                 62
Stepping:              4
CPU MHz:               2001.000
BogoMIPS:              3999.43
Virtualization:        VT-x
L1d cache:             32K
L1i cache:             32K
L2 cache:              256K
L3 cache:              20480K
NUMA node0 CPU(s):     0-7,16-23      #这些核绑定在numa 0
NUMA node1 CPU(s):     8-15,24-31     #这些核绑定在numa 1

4)伙伴关系算法

Linux内核通过著名伙伴关系算法为分配一组连续的页框而建立一种健壮、稳定的内存分配策略,是内核中一种内存分配器,并解决了内存管理外碎片的问题,外碎片是指频繁地请求和释放不同大小的一组连续页框,必然导致在已分配的页框的块分散了许多小块的空闲页框。

5)Slab机制

slab机制的核心思想是以对象的观点来管理内存,主要是为了解决内部碎片,内部碎片是由于采用固定大小的内存分区,即以固定的大小块为单位来分配,采用这种方法,进程所分配的内存可能会比所需要的大,这多余的部分便是内部碎片。slab也是内核中一种内存分配器,slab分配器基于对象进行管理的,所谓的对象就是内核中的数据结构(例如:task_struct,file_struct 等)。相同类型的对象归为一类,每当要申请这样一个对象时,slab分配器就从一个slab列表中分配一个这样大小的单元出去,而当要释放时,将其重新保存在该列表中,而不是直接返回给伙伴系统,从而避免内部碎片。上面中说到的dentry对象就是通过slab分配器分配的一种对象。

slab和伙伴系统是上下级的调用关系,伙伴关系按照页管理内存,slab按照字节管理,slab先从伙伴系统获取数个页的内存,然后切成分成固定的小块(称为object),然后再按照声明的对象数据结构分配对象。

6)进程内存分布

所有进程都必须占用一定数量的内存,这些内存用来存放从磁盘载入的程序代码,或存放来自用户输入的数据等。内存可以提前静态分配和统一回收,也可以按需动态分配和回收。对于普通进程对应的内存空间包含5种不同的数据区:

a、代码段(text):程序代码在内存中的映射,存放函数体的二进制代码,通常用于存放程序执行代码(即CPU执行的机器指令)。

b、数据段(data):存放程序中已初始化且初值不为0的全局变量和静态局部变量。数据段属于静态内存分配(静态存储区),可读可写。

c、BSS段(bss):未初始化的全局变量和静态局部变量。

d、堆(heap):动态分配的内存段,大小不固定,可动态扩张(malloc等函数分配内存),或动态缩减(free等函数释放)。

e、栈(stack):存放临时创建的局部变量。

Linux内存泄露案例分析和内存管理分享



Linux内核是操作系统中优先级最高的,内核函数申请内存必须及时分配适当的内存,用户态进程申请内存被认为是不紧迫的,内核尽量推迟给用户态的进程动态分配内存。

a、请求调页,推迟到进程要访问的页不在RAM中时为止,引发一个缺页异常。

b、写时复制(COW),父、子进程共享页框而不是复制页框,但是共享页框不能被修改,只有当父/子进程试图改写共享页框时,内核才将共享页框复制一个新的页框并标记为可写。

7)Linux内存检测工具

a、free命令可以监控系统内存

$ free -h
              total        used        free      shared  buff/cache   available
Mem:           31Gi        13Gi       8.0Gi       747Mi        10Gi        16Gi
Swap:         2.0Gi       321Mi       1.7Gi

b、top命令查看系统内存以及进程内存

VIRT Virtual Memory Size (KiB):进程使用的所有虚拟内存,包括代码(code)、数据(data)、共享库(shared libraries),以及被换出(swap out)到交换区和映射了(map)但尚未使用(未载入实体内存)的部分。

RES Resident Memory Size (KiB):进程所占用的所有实体内存(physical memory),不包括被换出到交换区的部分。

SHR Shared Memory Size (KiB):进程可读的全部共享内存,并非所有部分都包含在 RES 中。它反映了可能被其他进程共享的内存部分。

c、smaps文件

cat /proc/$pid/smaps查看某进程虚拟内存空间的分布情况

0082f000-00852000 rw-p 0022f000 08:05 4326085    /usr/bin/nginx/sbin/nginx
Size:                140 kB
Rss:                 140 kB
Pss:                  78 kB
Shared_Clean:         56 kB
Shared_Dirty:         68 kB
Private_Clean:         4 kB
Private_Dirty:        12 kB
Referenced:          120 kB
Anonymous:            80 kB
AnonHugePages:         0 kB
Swap:                  0 kB
KernelPageSize:        4 kB
MMUPageSize:           4 kB

d、vmstat

vmstat是Virtual Meomory Statistics(虚拟内存统计)的缩写,可实时动态监视操作系统的虚拟内存、进程、CPU活动。

## 每秒统计3次
$ vmstat 1 3
procs -----------memory---------------- ---swap-- -----io---- --system-- -----cpu-----
 r  b    swpd   free   buff  cache       si   so    bi    bo   in   cs us sy id  wa st
 0  0      0 233483840 758304 20795596    0    0     0     1    0    0  0  0 100  0  0
 0  0      0 233483936 758304 20795596    0    0     0     0 1052 1569  0  0 100  0  0
 0  0      0 233483920 758304 20795596    0    0     0     0  966 1558  0  0 100  0  0

e、meminfo文件

Linux系统中/proc/meminfo这个文件用来记录了系统内存使用的详细情况。

$ cat /proc/meminfo
MemTotal:        8052444 kB
MemFree:         2754588 kB
MemAvailable:    3934252 kB
Buffers:          137128 kB
Cached:          1948128 kB
SwapCached:            0 kB
Active:          3650920 kB
Inactive:        1343420 kB
Active(anon):    2913304 kB
Inactive(anon):   727808 kB
Active(file):     737616 kB
Inactive(file):   615612 kB
Unevictable:         196 kB
Mlocked:             196 kB
SwapTotal:       8265724 kB
SwapFree:        8265724 kB
Dirty:               104 kB
Writeback:             0 kB
AnonPages:       2909332 kB
Mapped:           815524 kB
Shmem:            732032 kB
Slab:             153096 kB
SReclaimable:      99684 kB
SUnreclaim:        53412 kB
KernelStack:       14288 kB
PageTables:        62192 kB
NFS_Unstable:          0 kB
Bounce:                0 kB
WritebackTmp:          0 kB
CommitLimit:    12291944 kB
Committed_AS:   11398920 kB
VmallocTotal:   34359738367 kB
VmallocUsed:           0 kB
VmallocChunk:          0 kB
HardwareCorrupted:     0 kB
AnonHugePages:   1380352 kB
CmaTotal:              0 kB
CmaFree:               0 kB
HugePages_Total:       0
HugePages_Free:        0
HugePages_Rsvd:        0
HugePages_Surp:        0
Hugepagesize:       2048 kB
DirectMap4k:      201472 kB
DirectMap2M:     5967872 kB
DirectMap1G:     3145728 kB

总结部分中一些内容来源于《深入理解Linux内核》,一些内容根据个人理解写出的,有不对地方欢迎指正,部分图片来源于网络

点赞
收藏
评论区
推荐文章
Linux内存泄露案例分析和内存管理分享
作者:李遵举一、问题近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张
线上FullGC问题排查实践——手把手教你排查线上问题 | 京东云技术团队
作者:京东科技韩国凯一、问题发现与排查1.1找到问题原因问题起因是我们收到了jdos的容器CPU告警,CPU使用率已经达到104%观察该机器日志发现,此时有很多线程在执行跑批任务。正常来说,跑批任务是低CPU高内存型,所以此时考虑是FullGC引起的大量C
Wesley13 Wesley13
3年前
VSCode 现内存泄漏 BUG,官方处理方式引社区不满
点击“开发者技术前线”,选择“星标🔝”让一部分开发者看到未来近日,有开发者提交了一个VSCode内存泄露的issues,该问题导致在某些情况下使用VSCode会使内存使用率攀升。令人意外的是,VSCode官方却表示不打算解决此问题,由此在社区引发了争议。今年十月,有一名开发者发现了VSCod
Easter79 Easter79
3年前
TarsCpp 组件之智能指针详解
!(https://ftp.bmp.ovh/imgs/2020/10/b7fb603e17fc6529.jpg)作者Eaton导语在C中,内存管理是十分重要的问题,一不小心就会造成程序内存泄露,那么怎么避免呢?通过智能指针可以优雅地管理内存,让开发者只需要关注内存的申请,内存的释放则会被自动管理。在文章开源微服务框
Wesley13 Wesley13
3年前
mysql 心跳检测
MySQL服务器所支持的最大连接数是有上限的,因为每个连接的建立都会消耗内存,因此我们希望客户端在连接到MySQLServer处理完相应的操作后,应该断开连接并释放占用的内存。如果你的MySQLServer有大量的闲置连接,他们不仅会白白消耗内存,而且如果连接一直在累加而不断开,最终肯定会达到MySQLServer的连接上限数,这会报'toomany
Easter79 Easter79
3年前
ThreadLocal 内存泄露的实例分析
前言之前写了一篇深入分析ThreadLocal内存泄漏问题(https://my.oschina.net/thinwonton/blog/1505136)是从理论上分析ThreadLocal的内存泄漏问题,这一篇文章我们来分析一下实际的内存泄漏案例。分析问题的过程比结果更重要,理论结合实际才能彻底分析出内存泄漏的原因。案例与分析
Easter79 Easter79
3年前
ThreadLocal的内存泄露的原因分析以及如何避免
前言在分析ThreadLocal导致的内存泄露前,需要普及了解一下内存泄露、强引用与弱引用以及GC回收机制,这样才能更好的分析为什么ThreadLocal会导致内存泄露呢?更重要的是知道该如何避免这样情况发生,增强系统的健壮性。内存泄露内存泄露为程序在申请内存后,无法释放已申请的内存空间,一次内存泄露危害可以忽略,但内存泄露堆积后果
记一次老商家端应用内存突然飚高原因分析 | 京东物流技术团队
一、排查过程问题发现是因为当时接到了内存UMP报警信息,如下:通过查看PFinder发现内存一直在增长,没有停止迹象,触发fullGC也并没有下降趋势:当机立断,先立即去NP上摘除了此台机器流量,然后继续观察,发现内存依然在不断增长。随即查看故障分析,并没
京东云开发者 京东云开发者
1个月前
Linux内存泄露案例分析和内存管理分享
作者:京东科技李遵举一、问题近期我们运维同事接到线上LB(负载均衡)服务内存报警,运维同事反馈说LB集群有部分机器的内存使用率超过80%,有的甚至超过90%,而且内存使用率还再不停的增长。接到内存报警的消息,让整个团队都比较紧张,我们团队负责的LB服务是零
京东云开发者 京东云开发者
1个月前
记一次老商家端应用内存突然飚高原因分析
作者:京东物流刘邓忠一、排查过程问题发现是因为当时接到了内存UMP报警信息,如下:通过查看PFinder发现内存一直在增长,没有停止迹象,触发fullGC也并没有下降趋势:当机立断,先立即去NP上摘除了此台机器流量,然后继续观察,发现内存依然在不断增长。随