数说:这只程序员组建的乐队为何能进HOT5?

Aidan075
• 阅读 1469

数说:这只程序员组建的乐队为何能进HOT5?

上周六晚,爱奇艺的独家综艺《乐队的夏天》总决赛终于落下了帷幕,虽然决赛过程有些“曲折”,但是我最喜欢的刺猬乐队,仍然凭借自己的硬实力,最终排在第二名!

值得一提的是,这只乐队的吉他手兼主唱也是一位程序员。

数说:这只程序员组建的乐队为何能进HOT5?

刺猬乐队其实成立10多年了,很有实力。

但是在老牌乐队云集的这次比赛中,第一次31进16时仅仅排在第12名,那么他又是如何逆风翻盘的?

让我来复盘一下。

获取数据

获取爱奇艺视频《乐队的夏天》各期节目的下面的评论。

数说:这只程序员组建的乐队为何能进HOT5?

F12,Network查看异步请求XHR,找到评论接口。

数说:这只程序员组建的乐队为何能进HOT5?

不要以为这里结束了,我们来看一下Request URL

https://sns-comment.iqiyi.com/v3/comment/get_comments.action?  
content_id=2537368600&types=time&last_id=213811925021  
&business_type=17&agent_type=119&agent_version=9.9.0&authcookie=

经过测试,大部分参数都是不变的,只有“content_id”和“last_id”,content_id对于每一期节目是固定的,我们可以自己手动获分析获得。那么last_id是怎么来的?

给大家放一下连续几页的 last_id 看一下吧。

213811925021  

213372828221  

212600215021  

211973666621

它们之间并没有什么累加的规律。

放弃的同学可以直接翻到上一张图,标黄的部分“213811925021”,正是我们看到的第一个 last_id 参数。

也就是说每个json里的最后一个 CommentId ,作为下一个url的 last_id 使用。

那么我们需要注意的就是在解析json的过程中需要返回最后一个 CommentId 。

def get_comments(url):  
    data = []  
    doc = get_json(url)  
    jobs=doc['data']['comments']  
    for job in jobs:  
        dic = {}  
        global CommentId  
        CommentId=jsonpath.jsonpath(job,'$..id')[0] #id  
        dic['id'] = CommentId  
        dic['content']=jsonpath.jsonpath(job,'$..content')[0] #评论  
        add_Time=jsonpath.jsonpath(job,'$..addTime')[0]  #时间  
        dic['addTime'] = stampToTime(add_Time)  #转化时间格式  
        dic['uid']=jsonpath.jsonpath(job['userInfo'],'$..uid')[0] #用户id  
        dic['uname']=jsonpath.jsonpath(job['userInfo'],'$..uname')[0] #用户名称  
        dic['gender']=jsonpath.jsonpath(job['userInfo'],'$..gender')[0] #性别  
        data.append(dic)  
    return data,CommentId #获得每个json里的最后一个CommentId 

剩下的循环爬取就好。

汇总后就获得了2.6万条评论数据。

数说:这只程序员组建的乐队为何能进HOT5?

数据分析

一个乐队名称在每期评论中的提及次数,可以侧面反映这只乐队在这期节目后受到观众喜欢的程度。

#乐队在评论中的提及数  
a = {'痛仰':'痛仰', '新裤子':'裤子','猴子军团':'猴子军团','鹿先森':'鹿先森','旺福':'旺福','九连真人':'九连','盘尼西林':'盘尼西林|青霉素',  
    '反光镜':'反光镜','click15':'click15|#15','海龟先生':'海龟先生','皇后皮箱':'皇后皮箱','面孔':'面孔','和平和浪':'和平和浪','MR.MISS':'MR.MISS|MISS',  
    'VOGUE5':'VOGUE5|VOGUE','薄荷绿':'薄荷绿','熊猫眼':'熊猫眼','果味VC':'果味VC','BONGBONG':'BONGBONG','醒山':'醒山','刺猬':'刺猬','旅行团':'旅行团',  
    '麋鹿王国':'麋鹿王国','宇宙人':'宇宙人','黑撒':'黑撒','南无':'南无','斯斯与帆':'斯斯与帆','葡萄不愤怒':'葡萄不愤怒','茶凉粉':'茶凉粉',  
    '青年小伙子':'青年小伙子','Mr.WooHoo':'Mr.WooHoo|WooHoo',}  
for key, value in a.items():  
    data1[key] = data1['content'].str.contains(value)  
staff_count = pd.Series({key: data1.loc[data1[key], 'content'].count() for key in a.keys()}).sort_values()  
print(staff_count)  

以第一期为例,结果如下。

数说:这只程序员组建的乐队为何能进HOT5?

每期节目的乐队排名都依次降序盘点汇总一下。

数说:这只程序员组建的乐队为何能进HOT5?

结果还蛮惊讶的。

除去第二期他们没有参加,也就是说从第三期开始,刺猬乐队便开始展现实力,几乎每一期都能让观众如此喜欢。

数说:这只程序员组建的乐队为何能进HOT5?

数据可视化

筛选出评论中提到刺猬乐队的评论数据。

data_ciwei= data[data['content'].str.contains('刺猬')]  

爬取得到的数据字段其实没几个。

简单看一下喜欢他们的观众的性别分布。

from pyecharts import Pie  
# 生成饼图  

gender_data = data_ciwei.groupby(['gender'])  
gender_cw = gender_data['gender'].agg(['count'])  
gender_cw.reset_index(inplace=True)  

attr = ['女', '男', '无']  
v1 = gender_cw['count']  
pie = Pie("评论提及刺猬乐队的用户性别分布", title_pos='center', title_top=0)  
pie.add("", attr, v1, radius=[40, 70], label_text_color=None, is_label_show=True, legend_orient="vertical", legend_pos="left", legend_top="%10")  
pie

使用pyecharts作图。

数说:这只程序员组建的乐队为何能进HOT5?

至于评论的长度之类的就不做分析了。

最后看一下词云,不用jieba分词试试。

from pyecharts import WordCloud  
# 生成词云  

bj_tag = []  
for st in data_ciwei.dropna(subset=['content'])['content']:  
    bj_tag.extend(st.split(' '))  

name, value = WordCloud.cast(Counter(bj_tag))  
wordcloud = WordCloud(width=1000, height=500)  
wordcloud.add("", name, value, word_size_range=[18, 250])  
wordcloud  

还是使用pyecharts作图。

数说:这只程序员组建的乐队为何能进HOT5?

可以看出观众对于刺猬乐队的要么是直接夸,要么是和其他强队做对比,总体都是希望它能越来越好。

刺猬总是强调摇滚乐是属于年轻人的,35岁之后可能就不那么摇滚了。

不过35岁之后,他们又将去向哪里呢?

也许等到中年的子健,面对着年轻的乐手们会说:

我不是针对谁,我是说在坐的各位,都没我代码写的好!

本文相关爬虫和数据分析代码:

#下载链接  
https://t.zsxq.com/yBAUNb2

数说:这只程序员组建的乐队为何能进HOT5?

原创不易,点个好看吧

本文转转自微信公众号凹凸数据原创https://mp.weixin.qq.com/s/SlBrGBJkDKMESCOI1C1zZA,可扫描二维码进行关注: 数说:这只程序员组建的乐队为何能进HOT5? 如有侵权,请联系删除。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Aidan075 Aidan075
3年前
数说:这只程序员组建的乐队为何能进HOT5?
上周六晚,爱奇艺的独家综艺《乐队的夏天》总决赛终于落下了帷幕,虽然决赛过程有些“曲折”,但是我最喜欢的刺猬乐队,仍然凭借自己的硬实力,最终排在第二名!
Wesley13 Wesley13
3年前
4cast
4castpackageloadcsv.KumarAwanish发布:2020122117:43:04.501348作者:KumarAwanish作者邮箱:awanish00@gmail.com首页:
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这