Hive优化的十大方法

Stella981
• 阅读 781

Hive用的好,才能从数据中挖掘出更多的信息来。用过hive的朋友,我想或多或少都有类似的经历:一天下来,没跑几次hive,就到下班时间了。Hive在极大数据或者数据不平衡等情况下,表现往往一般,因此也出现了presto、spark-sql等替代品。这里重点讲解hive的优化方式,例如

优化分组:set hive.auto.convert.join=true;

优化表关联内存运行:/*+MAPJOIN(t1,t3,t4)*/ 

一. 表连接优化

  1. 将大表放后头 Hive假定查询中最后的一个表是大表。它会将其它表缓存起来,然后扫描最后那个表。因此通常需要将小表放前面,或者标记哪张表是大表:/*streamtable(table_name) */

  2. 使用相同的连接键 当对3个或者更多个表进行join连接时,如果每个on子句都使用相同的连接键的话,那么只会产生一个MapReduce job。

  3. 尽量尽早地过滤数据 减少每个阶段的数据量,对于分区表要加分区,同时只选择需要使用到的字段。

  4. 尽量原子化操作 尽量避免一个SQL包含复杂逻辑,可以使用中间表来完成复杂的逻辑

二. 用insert into替换union all 如果union all的部分个数大于2,或者每个union部分数据量大,应该拆成多个insert into 语句,实际测试过程中,执行时间能提升50%。示例参考如下:

insert overwite table tablename partition (dt= ....)  

select ..... from ( select ... from A 
union all  
select ... from B  union all select ... from C ) R  

where ...;

可以改写为:

insert into table tablename partition (dt= ....) select .... from A WHERE ...; 
insert into table tablename partition (dt= ....) select .... from B  WHERE ...; 
insert into table tablename partition (dt= ....) select .... from C WHERE ...;

三. order by & sort by order by : 对查询结果进行全局排序消耗时间长,需要set hive.mapred.mode=nostrict sort by : 局部排序,并非全局有序,提高效率。

四. transform+python 一种嵌入在hive取数流程中的自定义函数,通过transform语句可以把在hive中不方便实现的功能在python中实现,然后写入hive表中。示例语法如下:

select transform({column names1})

using '**.py'

as {column names2}

from {table name}

如果除python脚本外还有其它依赖资源,可以使用ADD ARVHIVE。

五. limit 语句快速出结果 一般情况下,Limit语句还是需要执行整个查询语句,然后再返回部分结果。有一个配置属性可以开启,避免这种情况—对数据源进行抽样

hive.limit.optimize.enable=true --- 开启对数据源进行采样的功能
hive.limit.row.max.size --- 设置最小的采样容量
hive.limit.optimize.limit.file --- 设置最大的采样样本数

缺点:有可能部分数据永远不会被处理到

六. 本地模式 对于小数据集,为查询触发执行任务消耗的时间>实际执行job的时间,因此可以通过本地模式,在单台机器上(或某些时候在单个进程上)处理所有的任务。

set oldjobtracker=${hiveconf:mapred.job.tracker}; 
set mapred.job.tracker=local;  
set marped.tmp.dir=/home/edward/tmp;
set mapred.job.tracker=${oldjobtracker};
sql 语句

可以通过设置属性hive.exec.mode.local.auto的值为true,来让Hive在适当的时候自动启动这个优化,也可以将这个配置写在$HOME/.hiverc文件中。 当一个job满足如下条件才能真正使用本地模式:

job的输入数据大小必须小于参数:hive.exec.mode.local.auto.inputbytes.max(默认128MB)
job的map数必须小于参数:hive.exec.mode.local.auto.tasks.max(默认4)
job的reduce数必须为0或者1
可用参数hive.mapred.local.mem(默认0)控制child的jvm使用的最大内存数。

七. 并行执行 Hive会将一个查询转化为一个或多个阶段,包括:MapReduce阶段、抽样阶段、合并阶段、limit阶段等。默认情况下,一次只执行一个阶段。 不过,如果某些阶段不是互相依赖,是可以并行执行的。

set hive.exec.parallel=true,可以开启并发执行。
set hive.exec.parallel.thread.number=16; //同一个sql允许最大并行度,默认为8。

会比较耗系统资源。

八. 调整mapper和reducer的个数

  1. Map阶段优化 map个数的主要的决定因素有: input的文件总个数,input的文件大小,集群设置的文件块大小(默认128M,不可自定义)。参考举例如下:

假设input目录下有1个文件a,大小为780M,那么hadoop会将该文件a分隔成7个块(6个128m的块和1个12m的块),从而产生7个map数 假设input目录下有3个文件a,b,c,大小分别为10m,20m,130m,那么hadoop会分隔成4个块(10m,20m,128m,2m),从而产生4个map数。 即如果文件大于块大小(128m),那么会拆分,如果小于块大小,则把该文件当成一个块。 map执行时间:map任务启动和初始化的时间+逻辑处理的时间。

减少map数 若有大量小文件(小于128M),会产生多个map,处理方法是:

set mapred.max.split.size=100000000; 
set mapred.min.split.size.per.node=100000000; 
set mapred.min.split.size.per.rack=100000000;  

前面三个参数确定合并文件块的大小,大于文件块大小128m的,按照128m来分隔,小于128m,大于100m的,按照100m来分隔,把那些小于100m的(包括小文件和分隔大文件剩下的)进行合并。

set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; – 执行前进行小文件合并。

增加map数 当input的文件都很大,任务逻辑复杂,map执行非常慢的时候,可以考虑增加Map数,来使得每个map处理的数据量减少,从而提高任务的执行效率。 set mapred.reduce.tasks=?

  1. Reduce阶段优化 调整方式:

    set mapred.reduce.tasks=? set hive.exec.reducers.bytes.per.reducer = ?

一般根据输入文件的总大小,用它的estimation函数来自动计算reduce的个数:reduce个数 = InputFileSize / bytes per reducer

九. 严格模式

set hive.marped.mode=strict --防止用户执行那些可能意想不到的不好的影响的查询



(1)分区表,必须选定分区范围
(2)对于使用order by的查询,要求必须使用limit语句。因为order by为了执行排序过程会将所有的结果数据分发到同一个reducer中进行处理
(3)限制笛卡尔积查询:两张表join时必须有on语句

十. 数据倾斜 表现: 任务进度长时间维持在99%(或100%),查看任务监控页面,发现只有少量(1个或几个)reduce子任务未完成。因为其处理的数据量和其他reduce差异过大。单一reduce的记录数与平均记录数差异过大,通常可能达到3倍甚至更多。 最长时长远大于平均时长。

原因:

(1)key分布不均匀
(2)业务数据本身的特性
(3)建表时考虑不周
(4)某些SQL语句本身就有数据倾斜

Hive优化的十大方法

解决方案:参数调节

set hive.map.aggr=true

声明:本号所有文章除特殊注明,都为原创,公众号读者拥有优先阅读权,未经作者本人允许不得转载,否则追究侵权责任。

关注我的公众号,后台回复【JAVAPDF】获取200页面试题! 5万人关注的大数据成神之路,不来了解一下吗? 5万人关注的大数据成神之路,真的不来了解一下吗? 5万人关注的大数据成神之路,确定真的不来了解一下吗?

欢迎您关注《大数据成神之路》

Hive优化的十大方法

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
Hive 数据导入HBase的2种方法详解
最近经常被问到这个问题,所以简单写一下总结。Hive数据导入到HBase基本有2个方案:  1、HBase中建表,然后Hive中建一个外部表,这样当Hive中写入数据后,HBase中也会同时更新  2、MapReduce读取Hive数据,然后写入(API或者Bulkload)到HBase1、Hive外部表创
Stella981 Stella981
3年前
Hive Transaction 事务性 小试
  提到Hive一般都会想到,Hive是数据仓库,支持类SQL查询,有很多语法支持,可以嵌套MR,写Transform、写UDF/UDAF等,但是,不支持更新操作。所以Hive的常见也一般都是一次写入,频繁读取。从Hive0.13开始,加入了ACID的新feature,但是0.13的时候还不支持insert、update和delete操作,我也
Stella981 Stella981
3年前
Dbeaver连接Hive和Mysql的配置
1.连接Hive首选需要配置Hive这里我们采用的是JDBC的连接方式(1)在Hive中后台启动hiveserver2root@hadoop101hivebin/hiveserver2&(2)启动beelinebigdata@hadoop101hive$bin/be
Stella981 Stella981
3年前
HIVE 时间操作函数
日期函数UNIX时间戳转日期函数: from\_unixtime语法:   from\_unixtime(bigint unixtime\, string format\)返回值: string说明: 转化UNIX时间戳(从19700101 00:00:00 UTC到指定时间的秒数)到当前时区的时间格式举例:hive   selec
Stella981 Stella981
3年前
Hive 和普通关系数据库的异同
1.查询语言。由于SQL被广泛的应用在数据仓库中,因此,专门针对Hive的特性设计了类SQL的查询语言HQL。熟悉SQL开发的开发者可以很方便的使用Hive进行开发。2.数据存储位置。Hive是建立在Hadoop之上的,所有Hive的数据都是存储在HDFS(https://www.oschina.net/act
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这