深入理解树状数组 | 京东物流技术团队

京东云开发者
• 阅读 374

树状数组

树状数组(BIT, Binary Indexed Tree)是简洁优美的数据结构,它能在很少的代码量下支持单点修改区间查询,我们先以a[] {1, 2, 3, 4, 5, 6}数组为例建立树状数组看一下树状数组的样子:

深入理解树状数组 | 京东物流技术团队

可以发现:不是所有节点都是连接在一起的,c[1], c[2], c[3], c[4] 和 c[5], c[6] 分别构成了两棵树;奇数索引位置的节点只管辖一个数组元素(我们例子中以 1 为起始索引)。那么这个树状数组是怎么计算和推导出来的呢?

管辖的区间

树状数组的每个元素会管辖多少个数组元素?也就是说每个元素的区间长度是多少?我们从上图中已经知道了奇数的树状数组元素只管辖一个元素,区间为 c[x] = [x, x],那么我们只需再研究下偶数元素管辖的区间长度即可。

  • c[y] 所管辖的区间长度为 2k,其中 k 为 y 的 2 进制表示中最低位 1 后面所有 0 的数量;c[y] 所管辖的区间为:[y - 2k+ 1, y]

我们以 c[4] 为例,它管辖多少个元素呢?4 的 2 进制表示为 0100,最低位 1 后面 0 的数量为 2,即 k = 2,那么 2k= 22= 4,所以它管辖的区间长度为 4,也就是 4 个数组元素,区间为 [4 - 4 + 1, 4] = [1, 4]。

父节点是谁?

现在我们知道每个元素所管辖的区间范围了,那么我们怎么才能知道它的父节点是谁呢?就比如说我们现在得到了 c[1] 元素,我们想知道它的父节点,要怎么计算呢?

  • c[x] 的父节点为 c[x + lowbit(x)]

怎么回事?其中的**lowbit(x)**是什么东西?其实它的值和 2k一致,其中 k 为 x 的 2 进制表示中最低位 1 后面所有 0 的数量,熟悉不熟悉?这个 lowbit(x) 和我们上文中计算该元素所管辖区间长度的值一致!这不就简单了!

  • lowbit(x) 的计算方法:lowbit(x) = x & -x

    我们以计算 c[2] 为例,lowbit(2) = 2 & -2,其中 2 的 2 进制表示为 0010,-2 的 2 进行表示为 1110,它的计算方法为将 2 的所有非符号位二进制全部取反后再加 1,即 1101 + 1 = 1110,执行 & 运算后结果为 0010,十进制表示为 2,与 21值一致。lowbit 的计算用代码表示为:

        int lowbit(int x) {
            return x & -x;
        }
    
    
```

我们以 c[1] 节点为例计算下它的父节点是谁,lowbit(1) = 1 & -1 = 0001 & 1111 = 0001 = 1,那么它的父节点为 c[1 + 1] = c[2],与图上表示的一致。


现在我们已经知道如何通过计算来创建树状数组了, 接下来我们要看下它的应用。

区间查询

区间查询我们先讨论计算前 N 项和的方法,比如我们现在要查询前 6 项和,我们来看下它查询的过程:

  • 从 c[6] 开始找子节点,有 c[6] 管辖的区间为 [5, 6],那么再往下找需要找 c[4],它的区间为 [1, 4],计算这两个节点的和即可。

那么从 c[6] 跳到 c[4] 是如何计算出来的呢?我们可以通过 c[6] 区间的下界减 1 来得到,转换成公式表示即为 x - lowbit(x) = 6 - 2 = 4,当它跳到 c[4] 时发现已经满足求和条件,不再向下跳而结束查找,而且我们可以通过计算 4 - lowbit(4) = 4 - 4 = 0 ,可以发现当 x - lowbit(x) = 0 时为结束查找的条件。我们用代码来表示为:

    int query(int x) {
        int res = 0;
        for (int i = x; i > 0; i -= lowbit(i)) {
            res += c[i];
        }

        return res;
    }

那么我们计算区间 [3, 6] 的和该如何计算呢?我们从图中可以发现,先计算出[1, 6] 和 [1, 2] 的和,再使用前者减去后者即为所得,用代码表示为:

    int query(int left, int right) {
        return query(right) - query(left - 1);
    }

单点修改

如果我们要修改 a[x] 的值,我们仅需要修改所有管辖了 a[x] 的 c[y] 即可,而 a[x] 可能会被多个 c[y] 管辖,这些所有的 c[y] 节点该如何确定呢?我们可以回头再去看看前面的树状数组配图,比如我们要修改 a[1] 的值,那么我们需要修改 c[1], c[2] 和 c[4] ,能不能发现它是在不断的跳父节点修改?所以,如果我们要修改数组中某个元素的值,树状数组的更新则是不断地更新父节点值。好,我们直接上代码吧:

    // 将 index 索引处的值更新为 num
    void update(int index, int num) {
        a[index] = num;
        add(index, num - a[index]);
    }

    // 更新 c[index] 的值,变化差值为 val
    void add(int index, int val) {
        for (int i = index; i <= c.length; i += lowbit(i)) {
            c[i] += val;
        }
    }

建树

好了,区间查询和单点修改我们都讲完了,但是从头到尾我们还没说过树状数组是怎么建立的呢。我们可以想一下,c 数组初始化时每个索引处的值都为 0,建树仅需要将 a 数组中所有值都在树状数组中执行单点修改即可:

    public BinaryIndexedTree(int[] a) {
        this.a = a;
        this.c = new int[a.length + 1];

        for (int i = 0; i < a.length; i++) {
            add(i + 1, a[i]);
        }
    }

到这里我们基本上已经将树状数组讲解完毕了,它的全量代码如下:

public class BinaryIndexedTree {

    int[] a;

    int[] c;

    public BinaryIndexedTree(int[] a) {
        this.a = a;
        this.c = new int[a.length + 1];

        for (int i = 0; i < a.length; i++) {
            add(i + 1, a[i]);
        }
    }

    // 将 index 索引处的值更新为 num
    void update(int index, int num) {
        a[index] = num;
        add(index, num - a[index]);
    }

    // 更新 c[index] 的值,变化差值为 val
    void add(int index, int val) {
        for (int i = index; i < c.length; i += lowbit(i)) {
            c[i] += val;
        }
    }

    int query(int left, int right) {
        return query(right) - query(left - 1);
    }

    // 查询前缀和的方法
    int query(int x) {
        int res = 0;
        for (int i = x; i > 0; i -= lowbit(i)) {
            res += c[i];
        }

        return res;
    }

    int lowbit(int x) {
        return x & -x;
    }
}


巨人的肩膀

作者:京东物流 王奕龙

来源:京东云开发者社区 自猿其说Tech 转载请注明来源

点赞
收藏
评论区
推荐文章
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Easter79 Easter79
3年前
TurnipBit开发板DIY呼吸的吃豆人教程实例
  转载请以链接形式注明文章来源(MicroPythonQQ技术交流群:157816561,公众号:MicroPython玩家汇)  0x00前言  吃豆人是耳熟能详的可爱形象,如今我们的TurnipBit也集成了这可爱的图形,我们这就让他来呼吸了~。  0x01效果展示  先一起看下最终的成品演示视频:  http:/
Stella981 Stella981
3年前
Just a Hook(树状数组)
InthegameofDotA,Pudge’smeathookisactuallythemosthorriblethingformostoftheheroes.Thehookismadeupofseveralconsecutivemetallicstickswhichareofthesame
Wesley13 Wesley13
3年前
TZOJ 2722 Matrix(树状数组区间取反单点查询)
描述GivenanN\NmatrixA,whoseelementsareeither0or1.A\i,j\meansthenumberintheithrowandjthcolumn.InitiallywehaveA\i,j\0(1<i,j<N).
Wesley13 Wesley13
3年前
mysql树状数据的数据库设计
0树状数据的分类我们在mysql数据库设计的时候,会遇到一种树状的数据.如公司下面分开数个部门,部门下面又各自分开数个科室,以此形成树状的数据.关于树状的数据,按层级数大致可分为一下两类:分类特点固定数量层级层级数量固定,每一层级都有各自的意义,如集团分公司部门科室,省市区等可变数量层级层级数量不固定,前几层级
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
京东云开发者 京东云开发者
10个月前
京东ES支持ZSTD压缩算法上线了:高性能,低成本 | 京东云技术团队
1前言在《ElasticSearch降本增效常见的方法》一文中曾提到过zstd压缩算法\5.1Lucene文件lucene\\\\\\\dmJwEpl6CWtvMLdvR7g作者:京东科技杨松柏来源:京东云开发者社区转载请注明来源
京东云开发者 京东云开发者
2星期前
Java方法设计原则与实践:从Effective Java到团队案例
作者:京东物流京东物流背景本文通过阅读《EffectiveJava》、《CleanCode》、《京东JAVA代码规范》等代码质量书籍,结合团队日常代码实践案例进行整理,抛砖引玉、分享一些在编写高质量代码方面的见解和经验。这些书籍提供了丰富的理论知识,而团队
京东云开发者 京东云开发者
2星期前
京东物流-智能运输调度系统方案 荣获IF、红点国际设计大奖
作者:京东物流王文玲前言京东集团企业文化升级后,「以技术为本,让生活更美好」成为京东人的使命,在「创新」价值观引导下,设计师基于对物流业务领域持续深耕,自驱发起智能调度解决方案的创新思考,推演得到智能物流运输调度系统概念方案,经过投稿先后获得设计领域国际影