import cartopy.crs as ccrs
import matplotlib.pyplot as plt
from cartopy.mpl.gridliner import LONGITUDE_FORMATTER, LATITUDE_FORMATTER
import matplotlib.ticker as mticker
import numpy as np
import pandas as pd
import requests
from bs4 import BeautifulSoup
def get_catalog():
url = 'http://news.ceic.ac.cn/index.html'
web_data = requests.get(url)
web_data.encoding = web_data.apparent_encoding
web_data = web_data.text
f = open('earthquake.csv', 'w')
Date = []
Latitude = []
Longitude = []
Magnitude = []
soup = BeautifulSoup(web_data, 'lxml')
rows = soup.find_all('tr')
for i in rows:
cols = i.find_all('td')
if len(cols) != 0:
Magnitude.append(cols[0].text)
Date.append(cols[1].text.split()[0])
Latitude.append(cols[2].text)
Longitude.append(cols[3].text)
f.write('Date,Latitude,Longitude,Magnitude\n')
for i in range(len(Date)):
line = Date[i] + ',' + Latitude[i] + ',' + Longitude[i] + ',' + Magnitude[i]
print(Date[i] + ',' + Latitude[i] + ',' + Longitude[i] + ',' + Magnitude[i])
f.write(line + '\n')
f.close()
def plot_map():
plt.figure(figsize=(12, 8))
plt.rcParams['font.sans-serif'] = 'FangSong' # 设置中文字体为仿宋
plt.rcParams['axes.unicode_minus'] = False # 正常显示坐标轴上的铀号
ax = plt.axes(projection=ccrs.PlateCarree())
ax.coastlines()
ax.stock_img() # 将参考底图图像添加到地图,如果没有这条命令,底图是没有背景色的
# 画经纬度网格
gl = ax.gridlines(crs=ccrs.PlateCarree(), draw_labels=False, linewidth=1.2, color='k', alpha=0.3, linestyle='--')
gl.xlabels_top = False # 关闭顶端的经纬度标签
gl.ylabels_right = False # 关闭右侧的经纬度标签
gl.xformatter = LONGITUDE_FORMATTER # x轴设为经度的格式
gl.yformatter = LATITUDE_FORMATTER # y轴设为纬度的格式
#设置经纬度网格的间隔
gl.xlocator = mticker.FixedLocator(np.arange(-180, 180, 30))
gl.ylocator = mticker.FixedLocator(np.arange(-90, 90, 30))
# 设置显示范围
ax.set_extent([-180, 180, -90, 90],crs=ccrs.PlateCarree())
#设置坐标标签
ax.set_xticks(list(range(-180,180,60)), crs=ccrs.PlateCarree())
ax.set_yticks(list(range(-90,90,30)), crs=ccrs.PlateCarree())
plt.xticks(fontsize = 20)
plt.yticks(fontsize = 20)
# 填加大地测量座标系下的线条
# ny_lon, ny_lat = -75, 43
# delhi_lon, delhi_lat = 77.23, 28.61
# plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
# color='blue', linewidth=2, marker='o',
# transform=ccrs.Geodetic(),
# )
# 填加直角座标系下的线条
# plt.plot([ny_lon, delhi_lon], [ny_lat, delhi_lat],
# color='red', linestyle='--',
# transform=ccrs.PlateCarree(),
# )
# 填加文字
# plt.text(ny_lon - 3, ny_lat - 12, '纽约',
# horizontalalignment='right', color = 'red',
# transform=ccrs.Geodetic())
# plt.text(delhi_lon + 3, delhi_lat - 12, 'Delhi',
# horizontalalignment='left', color = 'red',
# transform=ccrs.Geodetic())
# 画震中分布
data = pd.read_csv('earthquake.csv')
scatter = ax.scatter(data.Longitude, data.Latitude,
s= (0.2* 2 ** data.Magnitude)**2,
c='red', alpha=0.8,
# c=data.depth / data.depth.max(), alpha=0.8,
transform=ccrs.PlateCarree())
# 填加图例
kw = dict(prop="sizes", num=5, color='red', fmt="M {x:.1f}",
func=lambda s: np.log2(np.sqrt(s)/0.2))
legend2 = ax.legend(*scatter.legend_elements(**kw),
loc="lower left", title="Mag")
ax.add_artist(legend2)
plt.tight_layout()
plt.savefig('world.png',dpi = 600)
# plt.show()
#################主程序###################
get_catalog()
plot_map()
Cartopy绘制震中分布图、散点图
点赞
收藏