Android app native代码性能分析

Stella981
• 阅读 950

分析我们app中native层的C/C++代码性能,能够方便我们找出其中的性能瓶颈,并在稍后做有针对性的优化。

1. 下载android-ndk-profiler

工欲善其事,必先利其器,我们先要有良好的工具来支持我们做性能分析的愿望。android-ndk-profiler就是目前我们可用的比较好的工具。原来这个项目是托管在google的代码托管服务器的,地址为https://code.google.com/p/android-ndk-profiler/,但现在它已经被迁移到gihub。访问原来的地址时,会自动地被重定向到github上,地址为https://github.com/richq/android-ndk-profiler。这样也好,倒省掉我们这些天朝子民翻墙的麻烦了。

我们可以到github去下载android ndk profiler。可以下载master branch的zip压缩包,也可以把整个项目直接git clone下来,git clone下来可能要更好一点。这个项目的目录结构大体如下(2015-06-25这天的版本):

hanpfei@hanpfei-ThundeRobot:~/android-ndk-profiler_repo$ ls -al
总用量 84
drwxrwxr-x  7 hanpfei hanpfei  4096  6月 25 11:26 .
drwxr-xr-x 54 hanpfei hanpfei  4096  6月 25 11:27 ..
-rw-rw-r--  1 hanpfei hanpfei 35147  6月 24 19:29 COPYING
drwxrwxr-x  2 hanpfei hanpfei  4096  6月 24 19:29 docs
drwxrwxr-x  3 hanpfei hanpfei  4096  6月 25 11:26 example
drwxrwxr-x  8 hanpfei hanpfei  4096  6月 25 11:26 .git
-rw-rw-r--  1 hanpfei hanpfei   365  6月 24 19:29 .gitignore
drwxrwxr-x  2 hanpfei hanpfei  4096  6月 25 11:26 jni
-rw-rw-r--  1 hanpfei hanpfei   974  6月 24 19:29 Makefile
-rw-rw-r--  1 hanpfei hanpfei   122  6月 25 11:26 ndk-excludes.txt
-rw-rw-r--  1 hanpfei hanpfei   791  6月 24 19:29 README.mkd
drwxrwxr-x  2 hanpfei hanpfei  4096  6月 24 19:29 test
-rw-rw-r--  1 hanpfei hanpfei   643  6月 25 11:26 .travis.yml

这个项目中提供的例子、文档什么的,可以参考一下。但真正需要被集成到我们项目里的就只有jni目录下面的那些。

我们把jni目录拷贝到另外一个地方,并重命名为android-ndk-profiler,比如:

hanpfei@hanpfei-ThundeRobot:~/android-ndk-profiler_repo$ cp -r jni ../android-ndk-profiler

后面我们会再来说明为什么要这么做。

2. 修改项目jni目录下的Android.mk文件,加载android-ndk-profiler


将android-ndk-profiler集成进我们项目的第一步,就是修改jni目录下的Android.mk文加载android-ndk-profiler了:

# compile with profiling
LOCAL_CFLAGS := -pg

LOCAL_STATIC_LIBRARIES := android-ndk-profiler


# at the end of Android.mk
$(call import-module,android-ndk-profiler)

如果项目的编译还需要其它的flag,则把应该把"-pg"加在_LOCAL_CFLAGS_行的最后面,或者在适当的位置加一行,使用+=语法来添加这个flag,比如:

LOCAL_CFLAGS += -pg -DP2P_PROFILING

_-pg_是_gcc_的调试选项,它们会将profiling信息加入到最终生成的二进制代码中,profiling信息包含了更多的调试信息。

LOCAL_STATIC_LIBRARIES_的值需要与android-ndk-profiler的_Android.mk_文件中定义的_LOCAL_MODULE_值对应,$(call import-module,android-ndk-profiler)_这一行中,call import-module为Android编译系统的内置命令,而android-ndk-profiler则要与项目的目录名对应,这也就是上面我们为什么要把jni目录copy,重命名为android-ndk-profiler的原因。

3. 设置NDK_MODULE_PATH环境变量

到目前为止,我们的项目都还无法编译通过。我们还需要设置_NDK_MODULE_PATH_环境变量。我们可以用_export_命令来设置这个环境变量,也可以将这个设置放在_ndk-build_命令中完成,而这个环境变量的值是android-ndk-profiler的父目录。比如,我们刚刚将android-ndk-profiler的jni目录拷贝到了用户根目录下的android-ndk-profiler目录,那么这个环境变量就应该被设置为~,即我们的用户根目录。

对于Eclipse环境,可以这样来设置:在Package Explorer中,鼠标选中项目,右键单击弹出菜单,Propertities -> C/C++ Build -> Build command,在最后加上NDK_MODULE_PATH=~。比如像下面这样:

ndk-build NDK_DEBUG=1 NDK_MODULE_PATH=~

如果没有做这样的设置的话,编译时会报错,由Eclipse的Console我们可以看到这样的报错信息:

/media/data/dev_tools/android-ndk-r9d/ndk-build NDK_DEBUG=1 
Android NDK: jni/Android.mk: Cannot find module with tag 'android-ndk-profiler' in import path    
jni/Android.mk:101: *** Android NDK: Aborting.    .  Stop.
Android NDK: Are you sure your NDK_MODULE_PATH variable is properly defined ?    
Android NDK: The following directories were searched:    
Android NDK:

4. _ucontext_t_类型的定义


很不幸,在我们正确地设置了**NDK_MODULE_PATH**环境变量之后,还是无法通过编译。Eclipse Console中的报错信息如下:

**** Build of configuration Default for project peerTester_udt ****
/media/data/dev_tools/android-ndk-r9d/ndk-build NDK_DEBUG=1 NDK_MODULE_PATH=~ 
[armeabi-v7a] Gdbserver      : [arm-linux-androideabi-4.6] libs/armeabi-v7a/gdbserver
[armeabi-v7a] Gdbsetup       : libs/armeabi-v7a/gdb.setup
[armeabi-v7a] Compile thumb  : android-ndk-profiler <= prof.c
/home/hanpfei/android-ndk-profiler/prof.c: In function 'histogram_bin_incr':
/home/hanpfei/android-ndk-profiler/prof.c:150:2: error: unknown type name 'ucontext_t'
/home/hanpfei/android-ndk-profiler/prof.c:150:26: error: 'ucontext_t' undeclared (first use in this function)
/home/hanpfei/android-ndk-profiler/prof.c:150:26: note: each undeclared identifier is reported only once for each function it appears in
/home/hanpfei/android-ndk-profiler/prof.c:150:38: error: expected expression before ')' token
/home/hanpfei/android-ndk-profiler/prof.c:151:41: error: request for member 'uc_mcontext' in something not a structure or union
make: *** [obj/local/armeabi-v7a/objs-debug/android-ndk-profiler/prof.o] Error 1

提示找不到**ucontext_t**类型的定义。这究竟又是怎么一回事呢?在github上,这个项目的all commits列表中,我们看到有这么几笔commits的comments里提到了_ucontext_t_:

b22514a66c0477dd34eadf7039e404bfc6f38c1b

516eee06cb18429dedabd145c9f00b0b14ff65c8
其中前者把_jni/ucontext.h_头文件中_ucontext_t_的定义给删了,而后者则干脆直接把这个头文件给彻底移除了。

b22514a66c0477dd34eadf7039e404bfc6f38c1b这笔commit的comments,我们大体可以了解到_ucontext_t的定义被从项目中移除的原因。ucontext本是GNU C库提供的一套标准的机制,用来创建、保存、切换用户态执行“上下文”,但无奈早期的NDK不支持这套机制,所以android-ndk-profiler项目就自己加了相关结构的定义。但自r10d版本开始,官方NDK已经是自带了对这套机制的支持,所以原来项目中ucontext_t_的定义就显得多余了。

真操蛋,可怜了我们这群还在使用r9版NDK的人儿。如果能方便地把使用的NDK更新到r10d及之后的版本自然更好。如果不能,只有另想他法。

官方把jni/ucontext.h这个文件给删了,那大不了我们把项目的repo reset几笔change,重新找回这个文件就是了。reset到b22514a66c0477dd34eadf7039e404bfc6f38c1b之前的那个状态,大概就是reset 9笔changes:

hanpfei@hanpfei-ThundeRobot:~/android-ndk-profiler_repo$ git reset --hard HEAD~9

OK,找回了我们要的_ucontext.h_文件了。此外,还需要修改prof.c文件来包含那个头文件。

至此,我们的项目终于能够顺利通过编译了。

5. 添加对监视函数的调用

经过了上面的步骤,android-ndk-profiler的功能终于被顺地编译进了我们的so。但要如何使android-ndk-profiler提供的功能运转起来呢?我们还需要在代码的适当位置,加入对监视函数的调用。

默认产生的profiling结果文件的路径为_/sdcard/gmon.out_,这个路径在_prof.c_中定义。因而我们需要让我们的app具有在sdcard上写文件的权限。我们可以在_AndroidManifest.xml_文件中加入下面一行:

<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />

在我们native code的适当位置,加入对监视函数的调用:

/* in the start-up code */
monstartup("your_lib.so");

/* in the onPause or shutdown code */
moncleanup();

比如在start性质的函数中加入对函数_monstartup()_的调用,在end性质的函数中加入对_moncleanup()函数的调用。要调用这两个函数,其它的一些基本设置必不可少:在调用这些函数的code文件中,inlcude相应的头文件,也就是_prof.h_;在_Android.mk_文件的搜索头文件路径列表中加入android-ndk-profiler的路径,也就是变量_LOCAL_C_INCLUDES_加入~/android-ndk-profiler_路径。

6. 产生并查看结果

_moncleanup()_执行结束之后,就在sdcard上产生了结果文件。我们可以使用_gprof_命令来产生profiling的报表文件。我们需要先用_adb pull_命令将_gmon.out_文件拷贝到自己的PC上,然后执行如下的命令产生结果:

$/media/data/dev_tools/android-ndk-r9d/toolchains/arm-linux-androideabi-4.8/prebuilt/linux-x86/bin/arm-linux-androideabi-gprof  libmoretvp2p.so  > gprof.txt

这个地方的so文件,是从项目的**obj/local/armeabi-v7a/下copy出来的,而不是项目的libs/armeabi-v7a/**下。使用后者来产生报表时会报错:

hanpfei@hanpfei-ThundeRobot:~/p2pclient_prof$ /media/data/dev_tools/android-ndk-r9d/toolchains/arm-linux-androideabi-4.8/prebuilt/linux-x86/bin/arm-linux-androideabi-gprof  libmoretvp2p.so  > gprof.txt
/media/data/dev_tools/android-ndk-r9d/toolchains/arm-linux-androideabi-4.8/prebuilt/linux-x86/bin/arm-linux-androideabi-gprof: file `libmoretvp2p.so' has no symbols

提示no symbols。

我们可以用普通的文本编辑器打开我们在上一步中产生的gprof.txt文件:

Flat profile:


Each sample counts as 0.01 seconds.
  %   cumulative   self              self     total           
 time   seconds   seconds    calls  ms/call  ms/call  name    
 21.69      0.82     0.82      299     2.74     2.74  CRcvLossList::CRcvLossList(int)
 20.11      1.58     0.76                             profCount
 12.70      2.06     0.48      299     1.61     1.61  CSndLossList::CSndLossList(int)
  5.29      2.26     0.20                             systemMessage
  4.76      2.44     0.18      301     0.60     0.60  CRcvBuffer::~CRcvBuffer()
  3.44      2.57     0.13      299     0.43     0.43  CRcvBuffer::CRcvBuffer(CUnitQueue*, int)
  2.12      2.65     0.08                             free_maps
  1.32      2.70     0.05     3052     0.02     0.02  CChannel::sendto(sockaddr const*, CPacket&) const
  1.32      2.75     0.05                             std::istream::sentry::sentry(std::istream&, bool)
  1.06      2.79     0.04       31     1.29     3.29  MORETV::HttpDownloadTask::downloadByHttp(std::string const&, Poco::AutoPtr<MORETV::TsDownloadSession>&)
  0.79      2.82     0.03    13956     0.00     0.00  Poco::AutoPtr<MORETV::TransportStreamImpl>::operator->()
  0.79      2.85     0.03     7322     0.00     0.00  MORETV::TransportStreamImpl::write(int, char const*, int)
  0.79      2.88     0.03     4391     0.01     0.01  std::_Rb_tree<int, std::pair<int const, CUDTSocket*>, std::_Select1st<std::pair<int const, CUDTSocket*> >, std::less<int>, std::allocator<std::pair<int const, CUDTSocket*> > >::_M_lower_bound(std::_Rb_tree_node<std::pair<int const, CUDTSocket*> >*, std::_Rb_tree_node<std::pair<int const, CUDTSocket*> >*, int const&)
  0.79      2.91     0.03                             sigemptyset
  0.53      2.93     0.02    33591     0.00     0.00  CChannel::recvfrom(sockaddr*, CPacket&) const
  0.53      2.95     0.02     1323     0.02     0.02  CACKWindow::store(int, int)
  0.53      2.97     0.02                             CRcvQueue::worker(void*)
  0.53      2.99     0.02                             std::string::replace(unsigned int, unsigned int, char const*, unsigned int)
  0.53      3.01     0.02                             std::locale::locale()
...

由这个结果,可以看到_android-ndk-profiler_工具本身的_profCount()_函数耗费了我们好多的CPU时间唉。

各个字段的具体含义如下:

% time
This is the percentage of the total execution time your program spent in this function. These should all add up to 100%.

cumulative seconds
This is the cumulative total number of seconds the computer spent executing this functions, plus the time spent in all the functions above this one in this table.

self seconds
This is the number of seconds accounted for by this function alone. The flat profile listing is sorted first by this number.

calls
This is the total number of times the function was called. If the function was never called, or the number of times it was called cannot be determined (probably because the function was not compiled with profiling enabled), the calls field is blank.

self ms/call
This represents the average number of milliseconds spent in this function per call, if this function is profiled. Otherwise, this field is blank for this function.

total ms/call
This represents the average number of milliseconds spent in this function and its descendants per call, if this function is profiled. Otherwise, this field is blank for this function. This is the only field in the flat profile that uses call graph analysis.

name
This is the name of the function. The flat profile is sorted by this field alphabetically after the self seconds and calls fields are sorted.

Done。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这