Python+OpenCV图像处理(九)—— 模板匹配

Stella981
• 阅读 551

百度百科:模板匹配是一种最原始、最基本的模式识别方法,研究某一特定对象物的图案位于图像的什么地方,进而识别对象物,这就是一个匹配问题。它是图像处理中最基本、最常用的匹配方法。模板匹配具有自身的局限性,主要表现在它只能进行平行移动,若原图像中的匹配目标发生旋转或大小变化,该算法无效。

简单来说,模板匹配就是在整个图像区域发现与给定子图像匹配的小块区域。

工作原理:在带检测图像上,从左到右,从上向下计算模板图像与重叠子图像的匹配度,匹配程度越大,两者相同的可能性越大。

代码如下:

#模板匹配
import cv2 as cv
import numpy as np
def template_demo():
    tpl =cv.imread("E:/imageload/sample1.jpg")
    target = cv.imread("E:/imageload/target1.jpg")
    cv.namedWindow('template image', cv.WINDOW_NORMAL)
    cv.imshow("template image", tpl)
    cv.namedWindow('target image', cv.WINDOW_NORMAL)
    cv.imshow("target image", target)
    methods = [cv.TM_SQDIFF_NORMED, cv.TM_CCORR_NORMED, cv.TM_CCOEFF_NORMED]   #3种模板匹配方法
    th, tw = tpl.shape[:2]
    for md in methods:
        print(md)
        result = cv.matchTemplate(target, tpl, md)
        min_val, max_val, min_loc, max_loc = cv.minMaxLoc(result)
        if md == cv.TM_SQDIFF_NORMED:
            tl = min_loc
        else:
            tl = max_loc
        br = (tl[0]+tw, tl[1]+th)   #br是矩形右下角的点的坐标
        cv.rectangle(target, tl, br, (0, 0, 255), 2)
        cv.namedWindow("match-" + np.str(md), cv.WINDOW_NORMAL)
        cv.imshow("match-" + np.str(md), target)

template_demo()
cv.waitKey(0)
cv.destroyAllWindows()

运行结果:

Python+OpenCV图像处理(九)—— 模板匹配

注意:

1.几种常见的模板匹配算法:

Python+OpenCV图像处理(九)—— 模板匹配

其中,

①TM_SQDIFF是平方差匹配;TM_SQDIFF_NORMED是标准平方差匹配。利用平方差来进行匹配,最好匹配为0.匹配越差,匹配值越大。

②TM_CCORR是相关性匹配;TM_CCORR_NORMED是标准相关性匹配。采用模板和图像间的乘法操作,数越大表示匹配程度较高, 0表示最坏的匹配效果。

③TM_CCOEFF是相关性系数匹配;TM_CCOEFF_NORMED是标准相关性系数匹配。将模版对其均值的相对值与图像对其均值的相关值进行匹配,1表示完美匹配,-1表示糟糕的匹配,0表示没有任何相关性(随机序列)。

总结:随着从简单的测量(平方差)到更复杂的测量(相关系数),我们可获得越来越准确的匹配(同时也意味着越来越大的计算代价)。

参考:

http://www.opencv.org.cn/opencvdoc/2.3.2/html/doc/tutorials/imgproc/histograms/template_matching/template_matching.html

https://blog.csdn.net/guduruyu/article/details/69231259

补:个人认为参考的第一篇博客的关于模板匹配算法的原理有一点点点错误,模板图像应该是左上角开始,而不是从中心点开始。在左上角那个点开始计算匹配度,最后得出的最匹配的坐标点是模板图像左上角的位置(纯属个人觉得,如有错误,欢迎指出来)。

我认为模板匹配原理应该如下:

Python+OpenCV图像处理(九)—— 模板匹配

2.opencv的目标匹配函数为matchTemplate,函数原型为:matchTemplate(image, templ, method[, result[, mask]]) -> result

image参数表示待搜索源图像,必须是8位整数或32位浮点。

templ参数表示模板图像,必须不大于源图像并具有相同的数据类型。

method参数表示计算匹配程度的方法。

result参数表示匹配结果图像,必须是单通道32位浮点。如果image的尺寸为W x H,templ的尺寸为w x h,则result的尺寸为(W-w+1)x(H-h+1)。

3.opencv的函数minMaxLoc:在给定的矩阵中寻找最大和最小值,并给出它们的位置。 该功能不适用于多通道阵列。 如果您需要在所有通道中查找最小或最大元素,要先将阵列重新解释为单通道。

函数minMaxLoc原型为:minMaxLoc(src[, mask]) -> minVal, maxVal, minLoc, maxLoc

src参数表示输入单通道图像。

mask参数表示用于选择子数组的可选掩码。

minVal参数表示返回的最小值,如果不需要,则使用NULL。

maxVal参数表示返回的最大值,如果不需要,则使用NULL。

minLoc参数表示返回的最小位置的指针(在2D情况下); 如果不需要,则使用NULL。

maxLoc参数表示返回的最大位置的指针(在2D情况下); 如果不需要,则使用NULL。

参考:https://blog.csdn.net/liuqz2009/article/details/60869427

 4.opencv的函数rectangle用于绘制矩形。函数原型为: rectangle(img, pt1, pt2, color[, thickness[, lineType[, shift]]]) -> img

img参数表示源图像。

pt1参数表示矩形的一个顶点。

pt2参数表示与pt1相对的对角线上的另一个顶点 。

color参数表示矩形线条颜色 (RGB) 或亮度(灰度图像 )。

thickness参数表示组成矩形的线条的粗细程度。取负值时(如 CV_FILLED)函数绘制填充了色彩的矩形。

lineType参数表示线条的类型。

shift参数表示坐标点的小数点位数。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Karen110 Karen110
3年前
图像中查找小图像的方法
如果有一副大图像和该大图像中截取的部分小图像,用人眼很容易找到小图像在大图像中的位置,但如果想通过电脑自动查找怎么解决呢?有2种方法,一种是直接通过图像矩阵的数据内容匹配进行查找,在一个大矩阵中查找对应小矩阵,这是精确匹配,要求小矩阵的所有元素与大矩阵中某部分的所有元素完全一致;另外一种就是OpenCVPython的HMT(hitandmisstransf
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Stella981 Stella981
3年前
OpenCV图像的轮廓的匹配
一个跟轮廓相关的最常用到的功能是匹配两个轮廓.如果有两个轮廓,如何比较它们;或者如何比较一个轮廓和另一个抽象模板.矩比较两个轮廓最简洁的方式是比较他们的轮廓矩.这里先简短介绍一个矩的含义.简单的说,矩是通过对轮廓上所有点进行积分运算(或者认为是求和运算)而得到的一个粗略特征.通常,我们如下定义一个轮廓的(p,q)矩:!(http://im
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这