Android Binder——framework

Stella981
• 阅读 916

上一篇Binder mRemote的前世今生PowerManger.isScreenOn()的调用流程已经调用到了BinderProxy.transact();

/frameworks/base/core/java/android/os/Binder.java

------> Binder.java——>BinderProxy
    public boolean transact(int code, Parcel data, Parcel reply, int flags) throws RemoteException {
        Binder.checkParcel(this, code, data, "Unreasonably large binder buffer");
        return transactNative(code, data, reply, flags);
    }

    public native boolean transactNative(int code, Parcel data, Parcel reply,
            int flags) throws RemoteException;

BinderProxy 的transact方法会调用JNI方法transactNative方法;
android_util_Binder.cpp

------> android_util_Binder.cpp
static const JNINativeMethod gBinderProxyMethods[] = {
     /* name, signature, funcPtr */
    {"pingBinder",          "()Z", (void*)android_os_BinderProxy_pingBinder},
    {"isBinderAlive",       "()Z", (void*)android_os_BinderProxy_isBinderAlive},
    {"getInterfaceDescriptor", "()Ljava/lang/String;", (void*)android_os_BinderProxy_getInterfaceDescriptor},
    {"transactNative",      "(ILandroid/os/Parcel;Landroid/os/Parcel;I)Z", (void*)android_os_BinderProxy_transact},
    {"linkToDeath",         "(Landroid/os/IBinder$DeathRecipient;I)V", (void*)android_os_BinderProxy_linkToDeath},
    {"unlinkToDeath",       "(Landroid/os/IBinder$DeathRecipient;I)Z", (void*)android_os_BinderProxy_unlinkToDeath},
    {"destroy",             "()V", (void*)android_os_BinderProxy_destroy},
};

static jboolean android_os_BinderProxy_transact(JNIEnv* env, jobject obj,
        jint code, jobject dataObj, jobject replyObj, jint flags) // throws RemoteException
{
    if (dataObj == NULL) {
        jniThrowNullPointerException(env, NULL);
        return JNI_FALSE;
    }

    Parcel* data = parcelForJavaObject(env, dataObj);//将Java层的Parcel对象数据转换为native Parcel
    if (data == NULL) {
        return JNI_FALSE;
    }
    Parcel* reply = parcelForJavaObject(env, replyObj);
    if (reply == NULL && replyObj != NULL) {
        return JNI_FALSE;
    }

    IBinder* target = (IBinder*)
        env->GetLongField(obj, gBinderProxyOffsets.mObject);//核心核心,
                            //还记得这里的gBinderProxyOffsets.mObject吗?你去前一篇文章搜索,会发现
        //env->SetLongField(object, gBinderProxyOffsets.mObject, (jlong)val.get());val是从Native中获取的BpBinder对象
        //setLongField就是将native 的BpBinder对象保存于Java层BinderProxy的mObject对象;
        //getLongField就是从BinderProxy的mObject对象对象中取出native BpBinder对象;所以target就是一个BpBinder对象;
        //很多实用JNI的系统类都会有这个做法,这样就不需要每次都去底层获取
    if (target == NULL) {
        jniThrowException(env, "java/lang/IllegalStateException", "Binder has been finalized!");
        return JNI_FALSE;
    }

    //printf("Transact from Java code to %p sending: ", target); data->print();
    status_t err = target->transact(code, *data, reply, flags);//核心核心,调用target的transact方法,
    //即调用BpBinder的transact方法;
    //if (reply) printf("Transact from Java code to %p received: ", target); reply->print();
#if ENABLE_BINDER_SAMPLE
    if (time_binder_calls) {
        conditionally_log_binder_call(start_millis, target, code);
    }
#endif
    signalExceptionForError(env, obj, err, true /*canThrowRemoteException*/);
    return JNI_FALSE;
}

这里IBinder* target就是Java层BinderProxy类的mObject变量,也就是上一篇文章在javaObjectForIBinder方法调用SetLongField保存的BpBinder对象;接下来就是调用BpBinder的transact方法:

/frameworks/native/libs/binder/BpBinder.cpp

------> BpBinder.cpp
status_t BpBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    // Once a binder has died, it will never come back to life.
    if (mAlive) {
        status_t status = IPCThreadState::self()->transact(
            mHandle, code, data, reply, flags);//核心核心核心,
            //这里的mHandle就是对应远程服务**引用的handle**
        if (status == DEAD_OBJECT) mAlive = 0;
        return status;
    }
    return DEAD_OBJECT;
}

这里很简单,就是调用 IPCThreadState::self()->transact,这里的mHandle是在初始化BpBinder对象时赋值的,也就是前面我们在调用getService获取服务流程中使用readStrongBinder调用getStrongProxyForHandle(flat->handle)传入的flat->handle;这个mHandle用于标识这个服务的引用
/frameworks/native/libs/binder/IPCThreadState.cpp

------> IPCThreadState.cpp
status_t IPCThreadState::transact(int32_t handle,
                                  uint32_t code, const Parcel& data,
                                  Parcel* reply, uint32_t flags)
{
    status_t err = data.errorCheck();//数据校验
    flags |= TF_ACCEPT_FDS;
    IF_LOG_TRANSACTIONS() {
        TextOutput::Bundle _b(alog);
        alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
            << handle << " / code " << TypeCode(code) << ": "
            << indent << data << dedent << endl;
    }    
    if (err == NO_ERROR) {
        LOG_ONEWAY(">>>> SEND from pid %d uid %d %s", getpid(), getuid(),
            (flags & TF_ONE_WAY) == 0 ? "READ REPLY" : "ONE WAY");
        err = writeTransactionData(BC_TRANSACTION, flags, handle, code, data, NULL);
        //将数据转为binder_transaction_data
    }    
    if (err != NO_ERROR) {
        if (reply) reply->setError(err);
        return (mLastError = err);
    }    
    if ((flags & TF_ONE_WAY) == 0) {
        #if 0
        if (code == 4) { // relayout
            ALOGI(">>>>>> CALLING transaction 4");
        } else {
            ALOGI(">>>>>> CALLING transaction %d", code);
        }
        #endif
        if (reply) {
            err = waitForResponse(reply);//核心核心核心
        } else {
            Parcel fakeReply;
            err = waitForResponse(&fakeReply);
        }
        #if 0
        if (code == 4) { // relayout
            ALOGI("<<<<<< RETURNING transaction 4");
        } else {
            ALOGI("<<<<<< RETURNING transaction %d", code);
        }
        #endif   
        IF_LOG_TRANSACTIONS() {
            TextOutput::Bundle _b(alog);
            alog << "BR_REPLY thr " << (void*)pthread_self() << " / hand "
                << handle << ": ";
            if (reply) alog << indent << *reply << dedent << endl;
            else alog << "(none requested)" << endl;
        }
    } else {
        err = waitForResponse(NULL, NULL);
    }    
    return err;

从第一篇Binder到现在,差不多一口气写了这么多,都差点忘记我写的是否正确,这是一个不好的习惯,这里我通过Log的方式来验证一下上面讲解的是否正确?

Android Binder——framework

对于我添加的Log,也直接贴代码吧:
APP:

                String TAG = "Bindertest MainActivity";
                Log.e(TAG,"App begin nativeCall");
                boolean bool = powerManager.isScreenOn();
                Log.e(TAG,"App end nativeCall");

Binder.java——>BinderProxy class

    public boolean transact(int code, Parcel data, Parcel reply, int flags) throws RemoteException {
        Binder.checkParcel(this, code, data, "Unreasonably large binder buffer");
        Log.e("BinderProxy.java  transact","Keiven-Chen");//自己添加的打印Log
        return transactNative(code, data, reply, flags);
    }

BpBinder.cpp

status_t BpBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    // Once a binder has died, it will never come back to life.
    if (mAlive) {
        ALOGE("Keiven-Chen-BpBinder.cpp transact");//自己添加的打印Log
        status_t status = IPCThreadState::self()->transact(
            mHandle, code, data, reply, flags);
        if (status == DEAD_OBJECT) mAlive = 0;
        return status;
    }

    return DEAD_OBJECT;
}

IPCThreadState.cpp

status_t IPCThreadState::transact(int32_t handle,
                                  uint32_t code, const Parcel& data,
                                  Parcel* reply, uint32_t flags)
{
    status_t err = data.errorCheck();

    flags |= TF_ACCEPT_FDS;
    if (getpid()==g_nTargetPid)//判断条件
    ALOGE("Keiven-Chen_IPCThread IPCThreadState::transact()");//自己添加的打印Log,这里使用getpid()==g_nTargetPid过滤条件,
    //因为IPCThreadState::transact在系统中会被很多进程频繁调用,如果不加过滤将会很多Log输出,不便于跟踪分析;
    IF_LOG_TRANSACTIONS() {
        TextOutput::Bundle _b(alog);
        alog << "BC_TRANSACTION thr " << (void*)pthread_self() << " / hand "
            << handle << " / code " << TypeCode(code) << ": "
            << indent << data << dedent << endl;
    }
......
}

status_t IPCThreadState::writeTransactionData(int32_t cmd, uint32_t binderFlags,
    int32_t handle, uint32_t code, const Parcel& data, status_t* statusBuffer)
{
    binder_transaction_data tr;
    ......
    if(getpid()==g_nTargetPid)//判断条件
    ALOGE("Keiven-Chen IPCThreadState::writeTransactionData()  tr.data_size = %d, offsets_size = %d, 
        target.handle = %d, data.ipcObjects() = %d, ipcObjectsCount() = %d",
        tr.data_size, tr.offsets_size, tr.target.handle, data.ipcObjects(), data.ipcObjectsCount());
    //自己添加的打印Log,过滤进程号为getpid()==g_nTargetPid的Log(因为writeTransactionData方法被系统频繁调用);
    mOut.writeInt32(cmd);
    mOut.write(&tr, sizeof(tr));
    
    return NO_ERROR;
}

这里我添加的Log就是根据前一篇的mRemote的追踪来添加的,Log说明前面的分析应该没问题;

需要清楚一件事,Binder通信调用到 IPCThreadState::transact方法时还没有跨进程,而是还在Client进程内;上述代码中getpid()方法用于获取到当前Client进程ID(PID),那g_nTargetPid从哪里来呢??? g_nTargetPid是我在Client中调用IPCThreadState的方法,然后在IPCThreadState中记录的Client进程号(PID);调用IPCThreadState的什么方法能记录下这个PID呢,肯定不是每个Client都默认调用的,而只在我的Client中才调用?这肯定就需要我们自己在IPCThreadState.cpp中添加特定方法来记录这个g_nTargetPid,这个方法也很简单,就是给g_nTargetPid赋值(g_nTargetPid = getpid()),这样我的client再次进入 IPCThreadState::transact时就能通过比较g_nTargetPid和getpid()的值来判断是否是我的client进程;这个就是在前一篇中中调用的processInfo.nativeSelfCall()来实现,nativeSelfCall是一个JNI,在该方法的实现中调用IPCThreadState::selfCall(),在selfCall()方法中记录实现g_nTargetPid = getpid()就能记录我们的Client进程ID了;

APP 部分

        findViewById(R.id.mybtn).setOnClickListener(new View.OnClickListener() {
            @Override
            public void onClick(View v) {
                ProcessInfo processInfo = new ProcessInfo();
                processInfo.nativeSelfCall();//JNI调用IPCThreadState.cpp的selfCall
                PowerManager powerManager = (PowerManager) getSystemService(Context.POWER_SERVICE);
                Log.e(TAG,"App begin nativeCall");
                boolean bool = powerManager.isScreenOn();
                Log.e(TAG,"App end nativeCall");
                Log.e(TAG,"" + bool);
            }
        });

ProcessInfo.java 的全包名必须是com.example.bindservice.ProcessInfo.java
public class ProcessInfo {
    static {
        System.loadLibrary("jnidemo");
    }
    public native void nativeSelfCall();

}

JNI 部分

jni 可以在系统中很多地方创建,这里我放在 /frameworks/native/libs目录下:
------> /frameworks/native/libs/jnidemo/ProcessInfo.cpp

static void JNI_nativeSelfCall(JNIEnv* env, jobject thiz)//实现JNI方法
{
    ALOGE("Keiven-Chen JNI_nativeSelfCall 111");//Log
    IPCThreadState::self()->selfCall();//核心调用,调用IPCThreadState.cpp中自己实现的方法
    ALOGE("Keiven-Chen JNI_nativeSelfCall 222");
}

static JNINativeMethod gMethods[] = {  
    {"nativeSelfCall", "()V", (void*)JNI_nativeSelfCall}, //绑定JNI方法
};
JNIEXPORT jint JNICALL JNI_OnLoad(JavaVM *jvm, void* reserved) {
    JNIEnv* env = NULL;  
    jint result = -1;  

    if ((jvm)->GetEnv((void**) &env, JNI_VERSION_1_4) != JNI_OK)
    {
        return -1;
    }

    jclass clazz = (env)->FindClass("com/example/bindservice/ProcessInfo");//绑定Java类,
    //必须在这个全类名中声明nativeSelfCall,这里指定了使用该JNI的Java类,所以我的ProcessInfo必须要要有上述包名;
    if (clazz)
    {
        if((env)->RegisterNatives(clazz, gMethods, sizeof(gMethods) / sizeof(gMethods[0])) < 0)//注册JNI
            ALOGE("Keiven-Chen RegisterNatives natives NOT ok");
        else
            ALOGE("Keiven-Chen RegisterNatives natives ok");
    }
    else
        ALOGE("Keiven-Chen could not find class");

    result = JNI_VERSION_1_4;
    return result; 
}

编译JNI脚本

LOCAL_PATH := $(call my-dir)
include $(CLEAR_VARS)
LOCAL_LDLIBS    := -lm -llog
LOCAL_MODULE := libjnidemo //生成jnidemo.so库

LOCAL_SHARED_LIBRARIES := liblog libcutils libutils libbinder

LOCAL_SRC_FILES := ProcessInfo.cpp
include $(BUILD_SHARED_LIBRARY)

这里看到JNI其实很简单,就是**调用 IPCThreadState::self()->selfCall();**,需要去IPCThreadState.cpp中实现selfCall方法;JNI知识可以参见之前的文章JNI/NDK

IPCThreadState.cpp

------> IPCThreadState.cpp
void IPCThreadState::selfCall()
{
    ALOGE("Keiven-Chen_IPCThread IPCThreadState::selfCall() 111 pid = %d, size of bwr is %d", 
                                                          getpid(), sizeof(binder_write_read));
    ioctl(mProcess->mDriverFD, 123456, NULL);//这里向Binder驱动传递命令数据,用于跟踪内核驱动,后续再说
    g_nTargetPid = getpid();/这里为g_nTargetPid 赋值,用于保存当前进程ID,后续通过该进程ID来过滤LOG
    ALOGE("Keiven-Chen_IPCThread IPCThreadState::selfCall() 222");
}

根据在应用Activity中的逻辑,程序的执行流程是先执行JNI调用IPCThreadState.cpp的selfCall,先执行该方法,此时得到我的应用进程号(PID)g_nTargetPid = getpid()=4385,在根据这个PID在IPCThreadState.cpp中过滤掉其他跨进程调用transact方法Log;下面是完整的Log截图,先调用selfCall,再调用isScreenOn。

Android Binder——framework

到这里,对于APP层是如何调用到IPCThreadState.cpp的transact应该很清晰了,接下来从IPCThreadState的transact继续往下跟踪;
IPCThreadState::transact方法中核心就是调用waitForResponse方法:

------> IPCThreadState.cpp
status_t IPCThreadState::transact(int32_t handle,
                                  uint32_t code, const Parcel& data,
                                  Parcel* reply, uint32_t flags)
{
    status_t err = data.errorCheck();

    flags |= TF_ACCEPT_FDS;
    if (getpid()==g_nTargetPid)
    ALOGE("Keiven-Chen_IPCThread IPCThreadState::transact()");

  ......

        if (reply) {
            err = waitForResponse(reply);//核心调用
        } else {
            Parcel fakeReply;
            err = waitForResponse(&fakeReply);
        }
   ......
status_t IPCThreadState::waitForResponse(Parcel *reply, status_t *acquireResult)
{
    int32_t cmd;
    int32_t err;
    //if((g_nTargetPid>0) && (getpid()==g_nTargetPid)) //添加Log用于过滤
    //ALOGE("11111 IPCThreadState::waitForResponse() mOut.data %d", *(int*)(mOut.data()));
    while (1) {
        if ((err=talkWithDriver()) < NO_ERROR) break; //核心调用,和驱动沟通
        err = mIn.errorCheck();
        if (err < NO_ERROR) break;
        if (mIn.dataAvail() == 0) continue;
        
        cmd = mIn.readInt32();//从mIn中获取Binder 驱动返回命令

        switch (cmd) {   //根据驱动不同的返回值执行不同操作
        case BR_TRANSACTION_COMPLETE:
            if (!reply && !acquireResult) goto finish;
            break;
        
        case BR_DEAD_REPLY:
            err = DEAD_OBJECT;
            goto finish;

        case BR_FAILED_REPLY:
            err = FAILED_TRANSACTION;
            goto finish;
        
        case BR_ACQUIRE_RESULT:
            {
                ALOG_ASSERT(acquireResult != NULL, "Unexpected brACQUIRE_RESULT");
                const int32_t result = mIn.readInt32();
                if (!acquireResult) continue;
                *acquireResult = result ? NO_ERROR : INVALID_OPERATION;
            }
            goto finish;
        
        case BR_REPLY:
            {
                binder_transaction_data tr;
                err = mIn.read(&tr, sizeof(tr));
                ALOG_ASSERT(err == NO_ERROR, "Not enough command data for brREPLY");
                if (err != NO_ERROR) goto finish;

                if (reply) {
                    if ((tr.flags & TF_STATUS_CODE) == 0) {
                        reply->ipcSetDataReference(
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t),
                            freeBuffer, this);
                    } else {
                        err = *reinterpret_cast<const status_t*>(tr.data.ptr.buffer);
                        freeBuffer(NULL,
                            reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                            tr.data_size,
                            reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                            tr.offsets_size/sizeof(binder_size_t), this);
                    }
                } else {
                    freeBuffer(NULL,
                        reinterpret_cast<const uint8_t*>(tr.data.ptr.buffer),
                        tr.data_size,
                        reinterpret_cast<const binder_size_t*>(tr.data.ptr.offsets),
                        tr.offsets_size/sizeof(binder_size_t), this);
                    continue;
                }
            }
            goto finish;

        default:
            err = executeCommand(cmd); //核心调用,用于处理驱动返回cmd
            if (err != NO_ERROR) goto finish;
            break;
        }
    }

finish:
    if (err != NO_ERROR) {
        if (acquireResult) *acquireResult = err;
        if (reply) reply->setError(err);
        mLastError = err;
    }
    
    return err;
}
......

waitForResponse的核心就是调用talkWithDriver,talkWithDriver真正和驱动程序打交道;waitForResponse还需要处理驱动返回值,根据Binder 驱动回传的cmd执行其他操作;

------> IPCThreadState.cpp

status_t IPCThreadState::talkWithDriver(bool doReceive)
{
    if (mProcess->mDriverFD <= 0) {
        return -EBADF;
    }    
    binder_write_read bwr;    
    // Is the read buffer empty?
    const bool needRead = mIn.dataPosition() >= mIn.dataSize();    
    // We don't want to write anything if we are still reading
    // from data left in the input buffer and the caller
    // has requested to read the next data.
    const size_t outAvail = (!doReceive || needRead) ? mOut.dataSize() : 0;    
    bwr.write_size = outAvail;
    bwr.write_buffer = (uintptr_t)mOut.data();//mOut数据在前面的writeTransactionData中初始化,bwr是用于和Binder驱动通信的结构体;
    // This is what we'll read.
    if (doReceive && needRead) {
        bwr.read_size = mIn.dataCapacity();
        bwr.read_buffer = (uintptr_t)mIn.data();
    } else {
        bwr.read_size = 0;
        bwr.read_buffer = 0;
    }
    // Return immediately if there is nothing to do.
    if ((bwr.write_size == 0) && (bwr.read_size == 0)) return NO_ERROR;//没有读写数据

    bwr.write_consumed = 0;
    bwr.read_consumed = 0;
    status_t err;
    do {
        IF_LOG_COMMANDS() {
            alog << "About to read/write, write size = " << mOut.dataSize() << endl;
        }
#if defined(HAVE_ANDROID_OS)
        //if(getpid()==g_nTargetPid)
        //    ALOGE("Keiven-Chen IPCThreadState::talkWithDriver() now into ioctl");
        if (ioctl(mProcess->mDriverFD, BINDER_WRITE_READ, &bwr) >= 0) //通过ioctl不停的读写操作,跟Binder Driver进行通信
            err = NO_ERROR;
        else
            err = -errno;
        //if(getpid()==g_nTargetPid)
        //    ALOGE("Keiven-Chenkai IPCThreadState::talkWithDriver() now out of ioctl");
#else
        err = INVALID_OPERATION;
#endif
        if (mProcess->mDriverFD <= 0) {
            err = -EBADF;
        }
    } while (err == -EINTR);
    if (err >= NO_ERROR) {
        if (bwr.write_consumed > 0) {
            if (bwr.write_consumed < mOut.dataSize())
                mOut.remove(0, bwr.write_consumed);
            else
                mOut.setDataSize(0);
        }
        if (bwr.read_consumed > 0) {
            mIn.setDataSize(bwr.read_consumed);
            mIn.setDataPosition(0);
        }
     
        return NO_ERROR;
    }
    
    return err;
}

binder_write_read结构体用来与Binder设备交换数据的结构, 通过ioctl与mDriverFD通信,是真正与Binder驱动进行数据读写交互的过程。

talkWithDriver的核心就是调用ioctl与mDriverFD通信,具体这个ioctl是如何实现的呢?ioctl其实是一个SysCall,这里记录一下ioctl的这个SysCall的调用流程;

IPCThreadState.cpp
ioctl(#include <sys/ioctl.h>)
=====>
ioctl.h(bionic/libc/include/sys/ioctl.h)
__BEGIN_DECLS
extern int ioctl(int, int, ...);
__END_DECLS
======>
bionic/ioctl.cpp(/bionic/libc/bionic/ioctl.c)
#include <stdarg.h>
extern int __ioctl(int, int, void *);
int ioctl(int fd, int request, ...)
{
    va_list ap;
    void * arg;

    va_start(ap, request);
    arg = va_arg(ap, void *);
    va_end(ap);
    return __ioctl(fd, request, arg);
}
======>
/bionic/libc/arch-arm/syscalls/__ioctl.S
#include <private/bionic_asm.h>
ENTRY(__ioctl)
    mov     ip, r7
    ldr     r7, =__NR_ioctl //__NR_ioctl 是ioctl的系统调用号
    swi     #0 //软中断命令
    mov     r7, ip
    cmn     r0, #(MAX_ERRNO + 1)
    bxls    lr
    neg     r0, r0
    b       __set_errno_internal
END(__ioctl)

__NR_ioctl 是在/kernel/include/uapi/asm-generic/unistd.h中定义的宏

------> unistd.h
/* fs/ioctl.c */ //说明sys_ioctl在这个文件中实现
#define __NR_ioctl 29
__SC_COMP(__NR_ioctl, sys_ioctl, compat_sys_ioctl)


------> kernel/arch/arm/kernel/calls.S
        CALL(sys_ni_syscall)        /* was sys_lock */
        CALL(sys_ioctl) //调用sys_ioctl


------> /kernel/include/linux/syscalls.h

#define SYSCALL_DEFINE0(sname)                  \
    SYSCALL_METADATA(_##sname, 0);              \
    asmlinkage long sys_##sname(void)

#define SYSCALL_DEFINE1(name, ...) SYSCALL_DEFINEx(1, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE2(name, ...) SYSCALL_DEFINEx(2, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE3(name, ...) SYSCALL_DEFINEx(3, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE4(name, ...) SYSCALL_DEFINEx(4, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE5(name, ...) SYSCALL_DEFINEx(5, _##name, __VA_ARGS__)
#define SYSCALL_DEFINE6(name, ...) SYSCALL_DEFINEx(6, _##name, __VA_ARGS__)

#define SYSCALL_DEFINEx(x, sname, ...)              \
    SYSCALL_METADATA(sname, x, __VA_ARGS__)         \
    __SYSCALL_DEFINEx(x, sname, __VA_ARGS__)

#define __PROTECT(...) asmlinkage_protect(__VA_ARGS__)
#define __SYSCALL_DEFINEx(x, name, ...)                 \
    asmlinkage long sys##name(__MAP(x,__SC_DECL,__VA_ARGS__));  \  //我们的 sys_ioctl是从这里展开的
    static inline long SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__));  \
    asmlinkage long SyS##name(__MAP(x,__SC_LONG,__VA_ARGS__))   \
    {                               \
        long ret = SYSC##name(__MAP(x,__SC_CAST,__VA_ARGS__));  \
        __MAP(x,__SC_TEST,__VA_ARGS__);             \
        __PROTECT(x, ret,__MAP(x,__SC_ARGS,__VA_ARGS__));   \
        return ret;                     \
    }                               \
    SYSCALL_ALIAS(sys##name, SyS##name);                \
    static inline long SYSC##name(__MAP(x,__SC_DECL,__VA_ARGS__))

asmlinkage long sys_ioctl(unsigned int fd, unsigned int cmd,
                unsigned long arg);

asmlinkage是gcc标签,代表函数读取的参数来自于栈中,而非寄存器。
由上述代码,知道我们的ioctl是通过SYSCALL_DEFINE3来定义的,到kernel/fs/ioctl.c中;

------> ioctl.c

SYSCALL_DEFINE3(ioctl, unsigned int, fd, unsigned int, cmd, unsigned long, arg)
{
    int error;
    struct fd f = fdget(fd);//我们在IPCThreadState.cpp中传递的mDriverFD,代表/dev/binder设备

    if (!f.file)
        return -EBADF;
    error = security_file_ioctl(f.file, cmd, arg);
    if (!error)
        error = do_vfs_ioctl(f.file, fd, cmd, arg);
    fdput(f);
    return error;
}

这里我们知道我们的ioctl将会怎么调用,这里ioctl的完整调用流程如下:
ioctl()→do_vfs_ioctl()→vfs_ioctl()→f_op->unlocked_ioctl()->binder_ioctl()

------> /kernel/drivers/staging/android/binder.c
static const struct file_operations binder_fops = {
    .owner = THIS_MODULE,
    .poll = binder_poll,
    .unlocked_ioctl = binder_ioctl,
    .compat_ioctl = binder_ioctl,
    .mmap = binder_mmap,
    .open = binder_open,
    .flush = binder_flush,
    .release = binder_release,
};

static struct miscdevice binder_miscdev = {
    .minor = MISC_DYNAMIC_MINOR,
    .name = "binder",//注册binder设备为杂项设备/dev/binder
    .fops = &binder_fops
};

这里理清了IPCThreadState.cpp中的ioctl是如何调用到驱动binder.c的binder_ioctl;

Binder驱动层有无数大神讲过,比如老罗,袁神;为了文章的完整性,粗略提一下Binder内核驱动处理流程;上面讲到talkWithDriver方法中会传递BINDER_WRITE_READ cmd给内核,内核中会根据这个cmd来操作驱动;核心就是根据是否有数据和Binder驱动交互来调用binder_thread_write或者binder_thread_read方法;binder_thread_write方法中会调用binder_transaction方法处理cmd 为BC_TRANSACTION 和BC_REPLY;binder_transaction会根据根据处理结果返回BR_xxx,Server端waitForResponse会根据BR_xxx进行不同的处理;

------>/kernel/drivers/staging/android/binder.c   binder_ioctl

    switch (cmd) {
    case BINDER_WRITE_READ: {
        struct binder_write_read bwr;
        if (size != sizeof(struct binder_write_read)) {
            ret = -EINVAL;
            goto err;
        }
        if (copy_from_user(&bwr, ubuf, sizeof(bwr))) {
            ret = -EFAULT;
            goto err;
        }
        binder_debug(BINDER_DEBUG_READ_WRITE,
                 "%d:%d write %lld at %016llx, read %lld at %016llx\n",
                 proc->pid, thread->pid,
                 (u64)bwr.write_size, (u64)bwr.write_buffer,
                 (u64)bwr.read_size, (u64)bwr.read_buffer);

        if (bwr.write_size > 0) {
            ret = binder_thread_write(proc, thread, bwr.write_buffer, bwr.write_size, &bwr.write_consumed);
            trace_binder_write_done(ret);
            if (ret < 0) {
                bwr.read_consumed = 0;
                if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                    ret = -EFAULT;
                goto err;
            }
        }
        if (bwr.read_size > 0) {
            ret = binder_thread_read(proc, thread, bwr.read_buffer, bwr.read_size, &bwr.read_consumed, filp->f_flags & O_NONBLOCK);
            trace_binder_read_done(ret);
            if (!list_empty(&proc->todo))
                wake_up_interruptible(&proc->wait);
            if (ret < 0) {
                if (copy_to_user(ubuf, &bwr, sizeof(bwr)))
                    ret = -EFAULT;
                goto err;
            }
        }

Client端将handle,cmd,data,code等数据封装到binder_transaction_data,再封装到binder_write_read结构体,调用ioctl和驱动交互,驱动调用binder_thread_write和binder_thread_read处理相关事务;IPCThreadState.cpp:BC_TRANSACTION ——> binder.c:binder_ioctl ——> IPCThreadState.cpp:BR_TRANSACTION

下图借鉴袁神:

Android Binder——framework

------> IPCThreadState.cpp  waitForResponse ---> executeCommand 
switch (cmd) {
            ......
      case  BR_TRANSACTION:
            ......
             if (tr.target.ptr) {
                sp<BBinder> b((BBinder*)tr.cookie);//这里的BBinder 对象b,cookie域存放的是是Binder对象
                ////核心核心
                ALOGE("Keiven-Chen_IPCThread IPCThreadState::BR_TRANSACTIO tr.target.ptr=true , %d \n",tr.target.ptr);
                error = b->transact(tr.code, buffer, &reply, tr.flags);//调用BBinder对象的transact方法;

              } else {
                ALOGE("Keiven-Chen_IPCThread IPCThreadState::BR_TRANSACTIO tr.target.ptr=false  \n");
                error = the_context_object->transact(tr.code, buffer, &reply, tr.flags);
            }
}

BR_TRANSACTION是由Server端处理,所以这里已经切换到了Server进程;后续的流程都是在Server进程中处理;

Android Binder——framework

Server进程调用BBinder的transact方法,BBinder的transact会调用onTransact方法,实现BBinder的地方是在JavaBBinder ,所以最终会调用JavaBBinder 的onTransact方法,JavaBBinder定义在android_util_Binder.cpp中;

------> Binder.cpp class BBinder
status_t BBinder::transact(
    uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
{
    data.setDataPosition(0);
    ALOGE("Keiven-Chen_IPCThread BBinder::transact \n");
    status_t err = NO_ERROR;
    switch (code) {
        case PING_TRANSACTION:
            reply->writeInt32(pingBinder());
            break;
        default:
            err = onTransact(code, data, reply, flags);//这里onTransact被子类实现,调用子类的onTransact方法
            break;
    }
    if (reply != NULL) {
        reply->setDataPosition(0);
    }
    return err;
}


------> android_util_Binder.cpp
class JavaBBinder : public BBinder

virtual status_t onTransact(
        uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags = 0)
    {
        JNIEnv* env = javavm_to_jnienv(mVM);
        IPCThreadState* thread_state = IPCThreadState::self();
   
        jboolean res = env->CallBooleanMethod(mObject, gBinderOffsets.mExecTransact,//核心核心,
                          //调用Binder.java 的execTransact方法,从这个方法调用到Java 层Stub 的onTransact方法
            code, reinterpret_cast<jlong>(&data), reinterpret_cast<jlong>(reply), flags);  

        if (thread_state->getStrictModePolicy() != strict_policy_before) {
            set_dalvik_blockguard_policy(env, strict_policy_before);
        }
        // Need to always call through the native implementation of
        // SYSPROPS_TRANSACTION.
        if (code == SYSPROPS_TRANSACTION) {
            BBinder::onTransact(code, data, reply, flags);
        }
    }

看到这里其实我是有疑问的,为何一定是走JavaBBinder的onTransact方法,这需要从注册服务说起;

------> ServiceManagerNative.java   class ServiceManagerProxy
public void addService(String name, IBinder service, boolean allowIsolated)
            throws RemoteException {
        Parcel data = Parcel.obtain();
        Parcel reply = Parcel.obtain();
        data.writeInterfaceToken(IServiceManager.descriptor);//每个服务在这里写入的descriptor都是固定的
        //这里是Parcel写入,我在Parcel JNI的android_os_Parcel_writeInterfaceToken中调用android_util_Binder.cpp中的testString方法
        data.writeString(name);
        data.writeStrongBinder(service);//这里写入的service
        data.writeInt(allowIsolated ? 1 : 0);
        mRemote.transact(ADD_SERVICE_TRANSACTION, data, reply, 0);
        reply.recycle();
        data.recycle();
    }
------> android_os_Parcel.cpp
static void android_os_Parcel_writeInterfaceToken(JNIEnv* env, jclass clazz, jlong nativePtr,
                                                  jstring name)
{
    Parcel* parcel = reinterpret_cast<Parcel*>(nativePtr);
    if (parcel != NULL) {
        // In the current implementation, the token is just the serialized interface name that
        // the caller expects to be invoking
        const jchar* str = env->GetStringCritical(name, 0);
        if (str != NULL) {
            testString(String16(str, env->GetStringLength(name)));//调用android_util_Binder.cpp中自己实现的方法,
            //将name传递到android_util_Binder用于判断ibinderForJavaObject 内部调用过程
            parcel->writeInterfaceToken(String16(str, env->GetStringLength(name)));
            env->ReleaseStringCritical(name, str);
        }
    }
}
static void android_os_Parcel_writeStrongBinder(JNIEnv* env, jclass clazz, jlong nativePtr, jobject object)
{
    Parcel* parcel = reinterpret_cast<Parcel*>(nativePtr);
    if (parcel != NULL) {
        const status_t err = parcel->writeStrongBinder(ibinderForJavaObject(env, object));
            //ibinderForJavaObject方法在android_util_Binder.java中实现
        if (err != NO_ERROR) {
            signalExceptionForError(env, clazz, err);
        }
    }
}
------> android_util_Binder.cpp

const char *namePower = NULL;
void testString(const String16& str){//自己添加的方法,注册方法的时候调用writeInterfaceToken时调用,便于过滤Log
     namePower = String8(str).string();
     ALOGE("kaikaikaichenchen %s \n", namePower);
}

sp<IBinder> ibinderForJavaObject(JNIEnv* env, jobject obj)
{
    if (obj == NULL) return NULL;
    if (env->IsInstanceOf(obj, gBinderOffsets.mClass)) {
        JavaBBinderHolder* jbh = (JavaBBinderHolder*)
            env->GetLongField(obj, gBinderOffsets.mObject);
       if (strcmp(namePower, "android.os.IPowerManager") == 0)
        {
            ALOGE("kaikaikaiChen: Binder  %p",jbh);
            ALOGE("kaikaikaiChen: Binder hahahahaha");//Log 标记,便于跟踪,Log 如下面截图
            ALOGE("kaikaikaiChen: Binder    %p ", obj);
        }
        return jbh != NULL ? jbh->get(env, obj) : NULL;//调用JavaBBinderHolder的get方法,
      //即创建JavaBBinder,这里确定注册IPowerManager时走的是这里
    }
    if (env->IsInstanceOf(obj, gBinderProxyOffsets.mClass)) {
        if (strcmp(namePower, "android.os.IPowerManager") == 0)
        ALOGE("kaikaikaiChen: BinderProxy    %p ", obj);//根据Log来判断,这个返回的到底是什么值
        return (IBinder*)
            env->GetLongField(obj, gBinderProxyOffsets.mObject);
    }

    ALOGW("ibinderForJavaObject: %p is not a Binder object", obj);
    return NULL;
}

Android Binder——framework

综上:所以这里会调用JavaBBinder的onTransact方法,JavaBBinder的onTransact会调用Binder.java 的execTransact,execTransact方法调用onTransact方法(onTransact方法被子类实现,这里会调用子类的onTransact方法),IPowerManger.Stub 继承自Binder,实现了onTransact方法,所以最终会调用IPowerManger.Stub的onTransact方法,Binder的完整调用流程如下图,下图借鉴与袁神与网络大神:

Android Binder——framework

Android Binder——framework

上面两张图诠释了Binder的主线;

经过上述一大堆铺垫,我们PowerManger.isScreenOn()调用流程将会走到IPowerManager.Stub的onTransact方法,onTransact根据code来执行不同方法,这里isScreenOn的code为TRANSACTION_isInteractive:

------> IPowerManager.java class Stub
                case TRANSACTION_isInteractive: {
                    data.enforceInterface(DESCRIPTOR);
                    boolean _result = this.isInteractive();
                    reply.writeNoException();
                    reply.writeInt(((_result) ? (1) : (0)));
                    return true;
                }

public boolean isInteractive() throws android.os.RemoteException;

PowerManagerService继承自IPowerManager.Stub, 即isInteractive方法在PowerManagerService.java中实现,这里会调用PowerManagerService.java的isInteractive;这里阐述了从Client端transact —>Binder驱动—>Server端onTransact的全过程,到此一个完整的Binder Call 就到此结束了;

智能硬件中很多有很多需要Native Service,推荐一篇Chloe_Zhang的Native Service

Native Service 实现步骤如下:
1.实现一个接口文件,IXXXService,继承IInterface
2.定义BnXXX,继承BnInterface。实现一个XXXService,继承BnXXX,并实现onTransact()函数。
3.定义BpXXX,继承BpInterface

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
Java获得今日零时零分零秒的时间(Date型)
publicDatezeroTime()throwsParseException{    DatetimenewDate();    SimpleDateFormatsimpnewSimpleDateFormat("yyyyMMdd00:00:00");    SimpleDateFormatsimp2newS
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这