Elasticsearch查询及聚合类DSL语句宝典

京东云开发者
• 阅读 445

作者:京东科技 纪海雨

前言

随着使用es场景的增多,工作当中避免不了去使用es进行数据的存储,在数据存储到es当中以后就需要使用DSL语句进行数据的查询、聚合等操作,DSL对SE的意义就像SQL对MySQL一样,学会如何编写查询语句决定了后期是否能完全驾驭ES,所以至关重要,本专题主要是分享常用的DSL语句,拿来即用。

一、match

如果match 查询数字,日期,布尔值或者not_analyzed 的字符串时,会精确匹配搜索值,不做分词解析;如果match 查询全文本,会对查询词做分词解析,然后搜索。

比如对keyword 类型的tag 查询,"京东总部"不会分词,必须完全相等的词才会被搜索出来

{a
  "query": {
    "match": {
        "content" : {
            "tag" : "京东总部"
        }
    }
  }
}

比如"宝马多少马力"会被分词为"宝马 多少 马力", 所有有关"宝马 多少 马力", 那么所有包含这三个词中的一个或多个的文档就会被搜索出来。并且根据lucene的评分机制(TF/IDF)来进行评分

{
  "query": {
    "match": {
        "content" : {
            "query" : "宝马多少马力"
        }
    }
  }
}

二、match_phrase

如果想要精确匹配所有同时包含"宝马 多少 马力"的文档,就要使用 match_phrase 了

{
  "query": {
    "match_phrase": {
        "content" : {
            "query" : "宝马多少马力"
        }
    }
  }
}

三、mult_match

如果我们希望两个字段进行匹配,其中一个字段有这个文档就满足的话,使用multi_match

{
  "query": {
    "multi_match": {
        "query" : "我的宝马多少马力",
        "fields" : ["title", "content"]
    }
  }
}

四、term

关键字精确匹配,不分词解析。注意 term 包含(contains) 操作,而非 等值(equals)判断。如果文档包含full_text 及其他词,也会命中返回。

使用term要确定的是这个字段是否“被分析”(analyzed),默认的字符串是被分析的。

比如下面的例子,其中的full_text是被分析过的,所以full_text的索引中存的就是[quick, foxes],而extra_value中存的是[Quick Foxes!]

PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "full_text": {
          "type":  "string"
        },
        "exact_value": {
          "type":  "string",
          "index": "not_analyzed"
        }
      }
    }
  }
}

PUT my_index/my_type/1
{
  "full_text":   "Quick Foxes!",
  "exact_value": "Quick Foxes!"  
}

请求不出数据的,因为full_text分词后的结果中没有[Quick Foxes!]这个分词

GET my_index/my_type/_search
{
  "query": {
    "term": {
      "full_text": "Quick Foxes!"
    }
  }
}

五、terms

指定多值精确匹配,如果字段包含了指定值中的任何一个值,那么文档满足条件。类似sql中的in

{
    "terms": {
        "tag": [
            "search",
            "full_text",
            "nosql"
        ]
    }
}

六、range

数字/时间的区间查询,操作符:

gt > greater than

gte >=

lt < litter than

lte <=

{
  "query":{
    "range": {
        "age": {
            "gte":  20,
            "lt":   30
        }
    }
  }
}

七、wildcard

通配符索引。* 表示全匹配,? 表示单一匹配。扫描所有倒排索引,性能较差

{ 
  "query": { 
    "wildcard": { 
      "companyName": "*京东*" 
    } 
  } 
}

八、regexp

正则索引。扫描所有倒排索引,性能较差

{ 
    "query": { 
        "regexp": { 
            "postcode": "W[0-9].+" 
        } 
    } 
}

九、组合多查询(bool查询)

bool 查询后面可以跟这四种匹配模式

•must 必须匹配

•must_not 必须不匹配

•should 匹配任意,等价or

•filter 必须匹配:过滤模式

比如我们想要请求"content 中带宝马,但是tag 中不带宝马"这样类似的需求,就需要用到bool 联合查询。

{
    "query":{
        "bool":{
            "must":{
                "term":{
                    "content":"宝马"
                }
            },
            "must_not":{
                "term":{
                    "tags":"宝马"
                }
            }
        }
    }
}

十、聚合

聚合包含一下两种:

1、 指标聚合(Metric Aggregation):一些数学运算,可以对文档字段进行统计分析

•输出一个值

▪min

▪max

▪sum

▪avg

▪ value_count 统计某字段有值的文档数

▪ cardinality 某字段值去重计数

•输出多个值

▪stats

▪percentiles

▪percentile_ranks

2、桶聚合(Bucket Aggregation) :一些列满足特定条件的文档的集合,相当于sql 的groupby

•terms 对某个字段统计每个不同的内容,以及出现文档的个数

•range 某个范围内文档的个数

默认聚合范围是全文,但是如果有query查询,那么聚合的范围就是query查询的结果。

value_count 统计某字段有值的文档数

{
  "size": 0, 
  "aggs": {
    "count": {
      "value_count": {
        "field": "companyName"
      }
    }
  }
}

指定查询语句进行统计

{
  "query": {
    "term": {
      "companyName": "安徽科达智慧能源科技有限公司"
    }
  },
  "aggs": {
    "count": {   //自定义名称
      "terms": {
        "field": "companyName"
      }
    }
  }
}



以上就是本期分享的DSL语句,小伙伴们结合自己的使用查询场景进行操练起来吧。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
PPDB:今晚老齐直播
【今晚老齐直播】今晚(本周三晚)20:0021:00小白开始“用”飞桨(https://www.oschina.net/action/visit/ad?id1185)由PPDE(飞桨(https://www.oschina.net/action/visit/ad?id1185)开发者专家计划)成员老齐,为深度学习小白指点迷津。
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Wesley13 Wesley13
3年前
FLV文件格式
1.        FLV文件对齐方式FLV文件以大端对齐方式存放多字节整型。如存放数字无符号16位的数字300(0x012C),那么在FLV文件中存放的顺序是:|0x01|0x2C|。如果是无符号32位数字300(0x0000012C),那么在FLV文件中的存放顺序是:|0x00|0x00|0x00|0x01|0x2C。2.  
Stella981 Stella981
3年前
SpringBoot整合Redis乱码原因及解决方案
问题描述:springboot使用springdataredis存储数据时乱码rediskey/value出现\\xAC\\xED\\x00\\x05t\\x00\\x05问题分析:查看RedisTemplate类!(https://oscimg.oschina.net/oscnet/0a85565fa
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
PHP创建多级树型结构
<!lang:php<?php$areaarray(array('id'1,'pid'0,'name''中国'),array('id'5,'pid'0,'name''美国'),array('id'2,'pid'1,'name''吉林'),array('id'4,'pid'2,'n
Easter79 Easter79
3年前
SpringBoot整合Redis乱码原因及解决方案
问题描述:springboot使用springdataredis存储数据时乱码rediskey/value出现\\xAC\\xED\\x00\\x05t\\x00\\x05问题分析:查看RedisTemplate类!(https://oscimg.oschina.net/oscnet/0a85565fa
Stella981 Stella981
3年前
Jenkins 插件开发之旅:两天内从 idea 到发布(上篇)
本文首发于:Jenkins中文社区(https://www.oschina.net/action/GoToLink?urlhttp%3A%2F%2Fjenkinszh.cn)!huashan(https://oscimg.oschina.net/oscnet/f499d5b4f76f20cf0bce2a00af236d10265.jpg)
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_