java中的线程池是运用场景最多的并发框架,几乎所有需要异步或并发执行任务的程序都可以使用线程池。在开发过程中,合理使用线程池能够带来三个好处。
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
第二:提高响应速度。当任务到达时,任务可以不需要等到线程创建就能立即执行。
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一分配、调优和监控。但是要做到合理利用线程池,必须对其原理了如指掌。
线程池的实现原理
当向线程池提交一个任务之后,线程池是如何处理这个任务的呢?
1.线程池判断核心线程池里线程是否都在执行任务。如果 不是,则创建一个新的工作线程来执行任务。如果核心线程池里面的线程都在执行任务,则进入下一个流程。
2.线程池判断工作队列是否已经满。如果工作队列没有满,则将新提交的任务存储在这个工作队列里。如果工作队列满了,则进入下一个流程。
3.线程池判断线程池中的线程是否都处于工作状态,如果没有,则创建一个新的工作线程来执行任务。如果已经满了,则交给饱和策略来处理这个任务
线程池的主要流程:
ThreadPoolExecutor执行示意图
ThreadPoolExecutor执行Execute方法分下面四种情况。
1.如果当前运行的线程少于corePoolSize,则创建新线程来执行任务(注意,执行这一步骤需要获取全局锁)。
2.如果运行的线程等于或多于corePoolSize,则将任务加入到BlockingQueue。
3.如果无法将任务加入BlockingQueue(队列已满),则创建新的线程来处理任务(注意,执行这一步骤需要获取全局锁)。
4.如果创建的新线程将使当前线程超出maximumPoolSize,任务将被拒绝,并调用RejectedExecutorHandler.rejectedExecution()方法。
ThreadPoolExecutor采取上述步骤的总体设计思路,是为了在执行execute()方法时,尽可能的避免获取全局锁(那将会是一个严重的可伸缩瓶颈)。在ThreadPoolExecutor完成预热之后(当前运行的线程数大于等于corePoolSize),几乎所有的execute()方法调用都是执行步骤2,而步骤2不需要获取全局锁
源码分析:线程池执行任务的方法如下:
public void execute(Runnable command) {
if (command == null)
throw new NullPointerException();
int c = ctl.get();
//如果线程数小于核心线程数,则闯进线程并执行当前任务
if (workerCountOf(c) < corePoolSize) {
if (addWorker(command, true))
return;
c = ctl.get();
}
//如果线程数大于等于核心线程数或创建线程失败,则将当前任务放到工作队列中
if (isRunning(c) && workQueue.offer(command)) {
int recheck = ctl.get();
if (! isRunning(recheck) && remove(command))
reject(command);
else if (workerCountOf(recheck) == 0)
addWorker(null, false);
}
//抛出RejectedExcutionException异常
else if (!addWorker(command, false))
reject(command);
}
工作线程:线程池创建线程时,会将线程封装成工作线程Worker,Worker在执行完任务后,还会循环获取工作队列里的任务来执行。我们可以从Worker类的run()方法里面看到这点。
final void runWorker(Worker w) {
Thread wt = Thread.currentThread();
Runnable task = w.firstTask;
w.firstTask = null;
w.unlock(); // allow interrupts
boolean completedAbruptly = true;
try {
while (task != null || (task = getTask()) != null) {
w.lock();
// If pool is stopping, ensure thread is interrupted;
// if not, ensure thread is not interrupted. This
// requires a recheck in second case to deal with
// shutdownNow race while clearing interrupt
if ((runStateAtLeast(ctl.get(), STOP) ||
(Thread.interrupted() &&
runStateAtLeast(ctl.get(), STOP))) &&
!wt.isInterrupted())
wt.interrupt();
try {
beforeExecute(wt, task);
Throwable thrown = null;
try {
task.run();
} catch (RuntimeException x) {
thrown = x; throw x;
} catch (Error x) {
thrown = x; throw x;
} catch (Throwable x) {
thrown = x; throw new Error(x);
} finally {
afterExecute(task, thrown);
}
} finally {
task = null;
w.completedTasks++;
w.unlock();
}
}
completedAbruptly = false;
} finally {
processWorkerExit(w, completedAbruptly);
}
}
线程池的使用
线程池的创建
我们可以通过ThreadPoolExecutor来创建一个线程池。
public ThreadPoolExecutor(int corePoolSize,
int maximumPoolSize,
long keepAliveTime,
TimeUnit unit,
BlockingQueue<Runnable> workQueue,
ThreadFactory threadFactory,
RejectedExecutionHandler handler) {
1.corePoolSize(线程池的基本大小):当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其它空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads()方法,线程池将会创建并启动所有基本线程。
2.workQueue(任务队列):用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。
- ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按照FIFO(先进先出)原则对元素进行排序。
- LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
- SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另外一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂Executors.newCachedThreadPool使用了这个队列。
- PriorityBlockingQueue:一个具有优先级的无线阻塞队列
maximumPoolSize(线程池最大数量):线程池允许创建的最大线程数。如果队列满了,并且已经创建的线程数小于最大x线程数,则线程池会创建新的线程执行任务。值得注意的是,如果使用了无界的任务队列这个参数就没什么效果了。
ThreadFactory :用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字。
RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认是AbortPolicy,表示无法处理新任务时,抛出异常。java线程池提供了以下四种策略:
- AbortPolicy:直接抛出异常
- CallerRunsPolicy:主线程执行这个任务
- DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
- DiscardPolicy:不处理,丢弃调。
当然,也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化存储不能处理的任务。
KeepAliveTime(线程活动保持时间):线程池的工作线程空闲后,保持存活的时间,所以,如果任务很多,并且每个任务的执行时间很短,可以调大时间,提高线程的利用率。
TimeUnit(线程活动保存的时间单位):可先的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微妙(MICROSECONDS),和纳秒(NANOSECONDS)。
向线程池提交任务
可以使用两个方法向线程池提交任务,分别是execute()和submit()方法。
execute()方法用于提交不需要返回值的任务,所以无法判断任务是否被线程池执行成功,通过以下代码可知execute()方法输入的任务是一个Runnable类的实例
threadsPool.execute(new Runnable()){
@Override
public void run(){
//todo
}
}
submit()方法用于提交需要返回值的任务。线程池会返回一个future类型的对象,通过这个future对象可以判断任务是否执行成功,并且可以通过future的get()方法来获取返回值,get()方法会阻塞当前线程直到任务完成,而使用get(long timeout,TimeUnit unit)方法则会阻塞当前线程一段时间后立即返回,这时候有可能任务没有执行完。
Future<Object> feature = executor.submit(task);
try{
Object s = feature.get();
}catch(InterruptedException e){
//todo 处理中断异常
}finally{
//关闭线程池
executor.shutdown();
}
关闭线程池
可以通过调用线程池的shutdown或shutdownNow方法来关闭线程池。他们的原理是遍历线程池中的工作线程,然后逐个调用线程的interrupt方法来中断线程,所以无法响应中断的任务可能永远无法终止。但是他们存在一定的区别,shutdownNow首先将线程池的状态设置成stop,然后尝试停止所有正在执行或暂停任务的线程,并返回等待任务执行的列表,而shutdown只是将线程池的状态设置成shutdown状态,然后中断所有没有正在执行任务的线程。
只要调用了这两个关闭方法中的任意一个,isShutdown方法就会返回true。当所有的任务都已关闭后,才表示线程池关闭成功,这时调用isTerminaed方法就会返回true。至于调用哪一种方法来关闭线程池,应该由提交到线程池的任务特性决定,通常调用shutdown方法来关闭线程池,如果任务不一定要执行完,则可以调用shutdownNow方法。
合理配置线程池
要想合理的配置线程池,就必须首先分析任务的特性,可以从以下几个角度来分析。
- 任务的性质:CPU密集型任务,IO密集型任务和混合型任务。
- 任务的优先级:高,中和低
- 任务的执行时间:长,中和短
- 任务的依赖性:是否依赖其他系统资源,如数据库连接。
性质不同的任务可以用不同规模的线程池分开处理。CPU密集型任务应配置尽可能小的线程,如配置Ncpu+1个线程的线程池。由于IO密集型任务的线程并不是一直在执行任务,则应配置尽可能多的线程,如2*Ncpu。混合型的任务,如果可以拆分,将其拆分成一个CPU密集型和一个IO密集型任务,只要这两个任务执行时间相差太大,则没必要进行分解。
优先级不同的任务可以使用优先级队列PriorityBlockingQueue来处理,它可以让优先级高的任务先执行。
线程池的监控
- taskCount:线程池需要执行的任务数量
- completedTaskCount:线程池里曾经创建过得最大线程数量。通过这个数据可以知道线程池是否曾经满过。如该值等于线程池的最大大小,则表示线程池曾经满过。
- getPoolSize:线程池的线程数量。如果线程池不销毁的话,线程池里的线程不会自动销毁,所有这个大小只增不减。
- getActiveCount:获取活动线程数。
通过扩展线程池进行监控。可以通过继承线程池来自定义线程池,重写线程池的beforeExecute, afterExecute和 terminated方法,也可以在任务执行前,执行后和线程池关闭前执行一些代码来进行监控。