JoJoGAN 实践

GoCoding
• 阅读 1256

JoJoGAN: One Shot Face Stylization. 只用一张人脸图片,就能学习其风格,然后迁移到其他图片。训练时长只用 1~2 min 即可。

效果:

JoJoGAN 实践

主流程:

JoJoGAN 实践

本文分享了个人在本地环境(非 colab)实践 JoJoGAN 的整个过程。你也可以依照本文上手训练自己喜欢的风格。

准备环境

安装:

conda create -n torch python=3.9 -y
conda activate torch

conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -y

检查:

$ python - <<EOF
import torch, torchvision
print(torch.__version__, torch.cuda.is_available())
EOF
1.10.1 True

准备代码

git clone https://github.com/mchong6/JoJoGAN.git
cd JoJoGAN

pip install tqdm gdown matplotlib scipy opencv-python dlib lpips wandb

# Ninja is required to load C++ extensions
wget https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip
sudo unzip ninja-linux.zip -d /usr/local/bin/
sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force

然后,将本文提供的几个 *.py 放进 JoJoGAN 目录,从这里获取: https://github.com/ikuokuo/start-deep-learning/tree/master/practice/JoJoGAN

  • download_models.py: 获取模型
  • generate_faces.py: 生成人脸
  • stylize.py: 风格化
  • train.py: 训练

之后,于训练流程一节,会结合代码,讲述下 JoJoGAN 的工作流程。其他些 *.py 只提下用法,实现就不多说了。

获取模型

python download_models.py 获取模型,如下:

models/
├── arcane_caitlyn_preserve_color.pt
├── arcane_caitlyn.pt
├── arcane_jinx_preserve_color.pt
├── arcane_jinx.pt
├── arcane_multi_preserve_color.pt
├── arcane_multi.pt
├── art.pt
├── disney_preserve_color.pt
├── disney.pt
├── dlibshape_predictor_68_face_landmarks.dat
├── e4e_ffhq_encode.pt
├── jojo_preserve_color.pt
├── jojo.pt
├── jojo_yasuho_preserve_color.pt
├── jojo_yasuho.pt
├── restyle_psp_ffhq_encode.pt
├── stylegan2-ffhq-config-f.pt
├── supergirl_preserve_color.pt
└── supergirl.pt

生成人脸

用 StyleGAN2 预训练模型随机生成人脸,用于测试:

python generate_faces.py -n 5 -s 2000 -o input

使用预训练风格

JoJoGAN 给了 8 个预训练模型,可以一并体验,与文首的效果图一样:

# 预览 JoJoGAN 所有预训练模型 风格化某图片(test_input/iu.jpeg)的效果
python stylize.py -i test_input/iu.jpeg -s all --save-all --show-all

# 使用 JoJoGAN 所有预训练模型 风格化所有生成的测试人脸(input/*)
find ./input -type f -print0 | xargs -0 -i python stylize.py -i {} -s all --save-all

训练自己的风格

首先,准备一张风格图:

JoJoGAN 实践

之后,开始训练:

python train.py -n yinshi -i style_images/yinshi.jpeg --alpha 1.0 --num_iter 500 --latent_dim 512 --use_wandb --log_interval 50

--use_wandb 时,可查看训练日志:

JoJoGAN 实践

最后,测试效果:

python stylize.py -i input/girl.jpeg --save-all --show-all --test_style yinshi --test_ckpt output/yinshi.pt --test_ref output/yinshi/style_images_aligned/yinshi.png

JoJoGAN 实践

训练工作流程

准备风格图片,转为训练数据

将风格图片里的人脸裁减对齐:

# dlib 预测人脸特征点,再裁减对齐
from util import align_face
style_aligned = align_face(img_path)

将风格图片 GAN Inversion 逆映射回预训练模型的隐向量空间(Latent Space):

name, _ = os.path.splitext(os.path.basename(img_path))
style_code_path = os.path.join(latent_dir, f'{name}.pt')

# e4e FFHQ encoder (pSp) > GAN inversion,得到 latent
from e4e_projection import projection
latent = projection(style_aligned, style_code_path, device)

载入 StyleGAN2 模型,训练微调

载入预训练模型:

latent_dim = 512

# 加载预训练模型
original_generator = Generator(1024, latent_dim, 8, 2).to(device)
ckpt = torch.load("models/stylegan2-ffhq-config-f.pt", map_location=lambda storage, loc: storage)
original_generator.load_state_dict(ckpt["g_ema"], strict=False)

# 准备微调的模型
generator = deepcopy(original_generator)

训练可调参数:

# 控制风格强度 [0, 1]
alpha = 1.0
alpha = 1-alpha

# 是否保留原图像色彩
preserve_color = True

# 训练迭代次数(最好 500,Adam 学习率是基于 500 次迭代调优的)
num_iter = 500

# 风格图片 targets 及 latents
targets = ..
latents = ..

进行训练,拟合隐空间。最后保存:

# 准备 LPIPS 计算 loss
lpips_fn = lpips.LPIPS(net='vgg').to(device)

# 准备优化器
g_optim = torch.optim.Adam(generator.parameters(), lr=2e-3, betas=(0, 0.99))

# 哪些层用于交换,用于生成风格化图片
if preserve_color:
    id_swap = [7,9,11,15,16,17]
else:
    id_swap = list(range(7, generator.n_latent))

# 训练迭代
for idx in tqdm(range(num_iter)):
    # 交换层混合风格,并加噪声
    mean_w = generator.get_latent(torch.randn([latents.size(0), latent_dim])
        .to(device)).unsqueeze(1).repeat(1, generator.n_latent, 1)
    in_latent = latents.clone()
    in_latent[:, id_swap] = alpha*latents[:, id_swap] + (1-alpha)*mean_w[:, id_swap]

    # 以 latent 风格化图片,与目标风格对比
    img = generator(in_latent, input_is_latent=True)
    loss = lpips_fn(F.interpolate(img, size=(256,256), mode='area'),
        F.interpolate(targets, size=(256,256), mode='area')).mean()

    # 优化
    g_optim.zero_grad()
    loss.backward()
    g_optim.step()

# 保存权重,完成
torch.save({"g": generator.state_dict()}, save_path)

结语

JoJoGAN 实践下来效果不错。使用本文给到的代码,更容易上手训练自己喜欢的风格,值得试试。

GoCoding 个人实践的经验分享,可关注公众号!

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
GoCoding GoCoding
1年前
roop 视频换脸
roop:oneclickfaceswap.只用一张人脸图片,就能完成视频换脸。本文是本地部署的实践记录。
Stella981 Stella981
3年前
Python3:sqlalchemy对mysql数据库操作,非sql语句
Python3:sqlalchemy对mysql数据库操作,非sql语句python3authorlizmdatetime2018020110:00:00coding:utf8'''
Wesley13 Wesley13
3年前
4cast
4castpackageloadcsv.KumarAwanish发布:2020122117:43:04.501348作者:KumarAwanish作者邮箱:awanish00@gmail.com首页:
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这
GoCoding
GoCoding
Lv1
Go coding in my way :)
文章
32
粉丝
5
获赞
10