从零开始学Flink:数据转换的艺术

linbojue
• 阅读 101

在实时数据处理流程中,数据转换(Transformation)是连接数据源与输出结果的桥梁,也是体现计算逻辑的核心环节。Flink提供了丰富的数据转换操作,让开发者能够灵活地对数据流进行各种处理和分析。本文将以Flink DataStream API为核心,带你探索Flink数据转换的精妙世界,并结合之前文章中的Kafka Source实现一个完整的数据处理流程。

一、数据转换概览 数据转换是指将原始输入数据通过一系列操作转换为所需输出结果的过程。在Flink中,这些操作主要分为以下几类:

基本转换:如映射(Map)、过滤(Filter)、扁平映射(FlatMap)等 键控转换:如分组(KeyBy)、聚合(Reduce、Aggregate)等 多流转换:如联合(Union)、连接(Join)、拆分(Split)等 状态转换:如键控状态(Keyed State)、算子状态(Operator State)等 这些转换操作就像数据的"加工厂",让原始数据经过一系列"工序"后,变成有价值的信息产品。

二、环境准备与依赖配置 为了演示数据转换,我们将继续使用之前文章中的Kafka Source环境。如果您已经完成了《从零开始学Flink:数据源》中的环境搭建,可以直接使用现有配置;如果还没有,请先参考该文章完成环境准备。

  1. 版本说明 Flink:1.20.1 Kafka:3.4.0 JDK:17+ gradle 8.3+
  2. 核心依赖 除了基础的Flink和Kafka依赖外,我们在本文中将引入一些额外的依赖来支持更丰富的数据处理场景:

dependencies { // Flink核心依赖 implementation 'org.apache.flink:flink-java:1.20.1' implementation 'org.apache.flink:flink-streaming-java_2.12:1.20.1'

// Flink Kafka Connector
implementation 'org.apache.flink:flink-connector-kafka_2.12:1.20.1'

// 日志依赖
implementation 'org.apache.logging.log4j:log4j-api:2.17.1'
implementation 'org.apache.logging.log4j:log4j-core:2.17.1'
implementation 'org.apache.logging.log4j:log4j-slf4j-impl:2.17.1'

// JSON处理库(用于处理JSON格式数据)
implementation 'com.fasterxml.jackson.core:jackson-databind:2.14.2'
implementation 'com.fasterxml.jackson.datatype:jackson-datatype-jsr310:2.14.2'

} 三、基本转换操作 基本转换是Flink中最常用、最简单的数据转换操作,它们对数据流中的每个元素进行独立处理,不涉及状态管理。

  1. 映射(Map) Map操作将输入流中的每个元素转换为另一个元素。例如,将字符串转换为大写:

// 从Kafka读取字符串数据 DataStream kafkaStream = env.fromSource( kafkaSource, WatermarkStrategy.noWatermarks(), Kafka Source );

// 使用Map将字符串转换为大写 DataStream upperCaseStream = kafkaStream.map(s -> s.toUpperCase());

upperCaseStream.print(UppercaseData); 2. 过滤(Filter) Filter操作根据条件过滤掉不需要的元素,只保留满足条件的元素:

// 过滤出包含flink关键词的消息 DataStream filteredStream = kafkaStream.filter(s -> s.toLowerCase().contains(flink));

filteredStream.print(FilteredData); 3. 扁平映射(FlatMap) FlatMap操作类似于Map,但它可以将一个元素转换为零个、一个或多个元素,常用于数据拆分场景:

// 将每行文本拆分为单词 DataStream wordStream = kafkaStream.flatMap((String value, Collector out) -> { // 按空格拆分字符串 String[] words = value.split( ); // 将每个单词发送到输出流 for (String word : words) { out.collect(word); } });

wordStream.print(WordData); 四、键控转换操作 键控转换是基于键(Key)对数据进行分组和聚合的操作,是实现复杂业务逻辑的基础。

  1. 分组(KeyBy) KeyBy操作根据指定的键将数据流划分为不同的分区,具有相同键的元素将被发送到同一个分区进行处理:

// 假设我们的Kafka消息格式为userId:message // 先将消息拆分为用户ID和消息内容 DataStream<Tuple2<String, String>> userMessageStream = kafkaStream.flatMap((String value, Collector<Tuple2<String, String>> out) -> { if (value.contains(:)) { String[] parts = value.split(:, 2); if (parts.length == 2) { out.collect(new Tuple2<>(parts[0], parts[1])); } } });

// 按键分组(这里以用户ID为键) KeyedStream<Tuple2<String, String>, String> keyedStream = userMessageStream.keyBy(tuple -> tuple.f0); 2. 聚合(Reduce) Reduce操作对KeyedStream进行聚合,常用于计算总和、最大值等:

// 假设我们的消息格式为userId:count,其中count是数字 // 先将消息转换为(userId, count)元组 DataStream<Tuple2<String, Integer>> userCountStream = kafkaStream.flatMap((String value, Collector<Tuple2<String, Integer>> out) -> { if (value.contains(:)) { String[] parts = value.split(:); if (parts.length == 2) { try { int count = Integer.parseInt(parts[1]); out.collect(new Tuple2<>(parts[0], count)); } catch (NumberFormatException e) { // 处理格式错误 LOG.warn(Invalid number format: {}, parts[1]); } } } });

// 按键分组 KeyedStream<Tuple2<String, Integer>, String> keyedCountStream = userCountStream.keyBy(tuple -> tuple.f0);

// 使用Reduce计算每个用户的总计数 DataStream<Tuple2<String, Integer>> sumStream = keyedCountStream.reduce((value1, value2) -> new Tuple2<>(value1.f0, value1.f1 + value2.f1) );

sumStream.print(SumData); 3. 自定义聚合(Aggregate) 对于更复杂的聚合需求,可以使用Aggregate操作,它提供了更灵活的聚合方式:

// 计算每个用户消息的平均值长度 DataStream<Tuple2<String, Double>> avgLengthStream = keyedStream.aggregate(new AggregateFunction<Tuple2<String, String>, Tuple2<Integer, Integer>, Double>() { // 创建初始累加器 @Override public Tuple2<Integer, Integer> createAccumulator() { return new Tuple2<>(0, 0); // (总长度, 消息数量) }

// 将元素添加到累加器
@Override
public Tuple2<Integer, Integer> add(Tuple2<String, String> value, Tuple2<Integer, Integer> accumulator) {
    return new Tuple2<>(accumulator.f0 + value.f1.length(), accumulator.f1 + 1);
}

// 获取聚合结果
@Override
public Double getResult(Tuple2<Integer, Integer> accumulator) {
    return accumulator.f1 > 0 ? (double) accumulator.f0 / accumulator.f1 : 0;
}

// 合并累加器(用于并行计算)
@Override
public Tuple2<Integer, Integer> merge(Tuple2<Integer, Integer> a, Tuple2<Integer, Integer> b) {
    return new Tuple2<>(a.f0 + b.f0, a.f1 + b.f1);
}

});

avgLengthStream.print(AvgLengthData); 五、多流转换操作 在实际应用中,我们经常需要处理多个数据流。Flink提供了多种多流转换操作,让我们能够灵活地处理复杂的数据场景。

  1. 联合(Union) Union操作可以将多个同类型的数据流合并为一个数据流:

// 假设我们有两个Kafka主题,都产生字符串数据 KafkaSource kafkaSource1 = KafkaSource.builder() .setBootstrapServers(kafkaBootstrapServers) .setTopics(topic1) .setGroupId(consumerGroup) .setDeserializer(KafkaRecordDeserializationSchema.valueOnly(StringDeserializer.class)) .setStartingOffsets(OffsetsInitializer.earliest()) .build();

KafkaSource kafkaSource2 = KafkaSource.builder() .setBootstrapServers(kafkaBootstrapServers) .setTopics(topic2) .setGroupId(consumerGroup) .setDeserializer(KafkaRecordDeserializationSchema.valueOnly(StringDeserializer.class)) .setStartingOffsets(OffsetsInitializer.earliest()) .build();

// 创建两个数据流 DataStream stream1 = env.fromSource(kafkaSource1, WatermarkStrategy.noWatermarks(), Kafka Source 1); DataStream stream2 = env.fromSource(kafkaSource2, WatermarkStrategy.noWatermarks(), Kafka Source 2);

// 合并两个数据流 DataStream unionStream = stream1.union(stream2);

unionStream.print(UnionData); 2. 连接(Connect) Connect操作可以连接两个不同类型的数据流,保留各自的数据类型,适用于需要对不同类型数据进行协同处理的场景:

// 假设我们有一个用户数据流和一个订单数据流 // 用户数据流格式:userId:username DataStream<Tuple2<String, String>> userStream = kafkaStream1.flatMap((String value, Collector<Tuple2<String, String>> out) -> { if (value.contains(:)) { String[] parts = value.split(:); if (parts.length == 2) { out.collect(new Tuple2<>(parts[0], parts[1])); } } });

// 订单数据流格式:orderId:userId:amount DataStream<Tuple3<String, String, Double>> orderStream = kafkaStream2.flatMap((String value, Collector<Tuple3<String, String, Double>> out) -> { if (value.contains(:)) { String[] parts = value.split(:); if (parts.length == 3) { try { double amount = Double.parseDouble(parts[2]); out.collect(new Tuple3<>(parts[0], parts[1], amount)); } catch (NumberFormatException e) { LOG.warn(Invalid number format: {}, parts[2]); } } } });

// 按键连接两个数据流(这里以用户ID为键) ConnectedStreams<Tuple2<String, String>, Tuple3<String, String, Double>> connectedStreams = userStream.keyBy(tuple -> tuple.f0).connect(orderStream.keyBy(tuple -> tuple.f1));

// 处理连接后的数据流 DataStream resultStream = connectedStreams.map( // 处理用户数据 user -> User: + user.f1, // 处理订单数据 order -> Order from user + order.f1 + , amount: + order.f2 );

resultStream.print(ConnectedData); 六、实战案例:实时日志分析系统 现在,让我们结合之前学到的Kafka Source和本文介绍的数据转换操作,实现一个简单的实时日志分析系统。

  1. 需求分析 我们需要从Kafka读取应用程序日志,实时分析日志级别分布、错误日志数量以及按小时统计的日志量。

  2. 数据模型 假设我们的日志格式为:timestamp|logLevel|message,例如:2025-09-22 12:30:45|ERROR|Failed to connect to database

  3. 完整代码实现 创建一个主类LogAnalysisDemo,用于实现实时日志分析系统的逻辑。

package com.cn.daimajiangxin.flink.transformation;

import org.apache.flink.api.common.eventtime.WatermarkStrategy; import org.apache.flink.api.common.functions.AggregateFunction; import org.apache.flink.api.common.functions.FlatMapFunction; import org.apache.flink.api.common.functions.MapFunction; import org.apache.flink.api.common.typeinfo.TypeHint; import org.apache.flink.api.common.typeinfo.TypeInformation; import org.apache.flink.api.java.tuple.Tuple2; import org.apache.flink.api.java.tuple.Tuple3; import org.apache.flink.connector.kafka.source.KafkaSource; import org.apache.flink.connector.kafka.source.enumerator.initializer.OffsetsInitializer; import org.apache.flink.connector.kafka.source.reader.deserializer.KafkaRecordDeserializationSchema; import org.apache.flink.streaming.api.datastream.DataStream; import org.apache.flink.streaming.api.datastream.KeyedStream; import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment; import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction; import org.apache.flink.streaming.api.windowing.assigners.GlobalWindows; import org.apache.flink.streaming.api.windowing.time.Time; import org.apache.flink.streaming.api.windowing.triggers.CountTrigger; import org.apache.flink.streaming.api.windowing.windows.GlobalWindow; import org.apache.flink.streaming.api.windowing.windows.TimeWindow; import org.apache.flink.streaming.api.windowing.assigners.TumblingProcessingTimeWindows; import org.apache.flink.util.Collector; import org.apache.kafka.clients.consumer.ConsumerRecord; import org.slf4j.Logger; import org.slf4j.LoggerFactory;

import java.io.IOException; import java.nio.charset.StandardCharsets; import java.text.ParseException; import java.text.SimpleDateFormat; import java.time.Duration; import java.util.Date;

public class LogAnalysisDemo { private static final Logger LOG = LoggerFactory.getLogger(LogAnalysisDemo.class); private static final SimpleDateFormat DATE_FORMAT = new SimpleDateFormat(yyyy-MM-dd HH:mm:ss);

public static void main(String[] args) throws Exception {
    // 1. 创建Flink流执行环境
    StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();

    // 启用检查点
    env.enableCheckpointing(10000); // 每10秒做一次检查点
    env.getCheckpointConfig().setCheckpointTimeout(60000); // 检查点超时时间60秒
    env.getCheckpointConfig().setMinPauseBetweenCheckpoints(5000); // 检查点之间最小暂停时间
    env.getCheckpointConfig().setMaxConcurrentCheckpoints(1); // 最大并发检查点数量


    // 2. 配置Kafka参数
    String kafkaBootstrapServers = 172.30.244.152:9092;
    String topic = app_logs;
    String consumerGroup = flink-log-analysis;

    // 3. 定义Kafka Source
    KafkaSource<String> kafkaSource = KafkaSource.<String>builder()
            .setBootstrapServers(kafkaBootstrapServers)
            .setTopics(topic)
            .setGroupId(consumerGroup)
            .setDeserializer(new KafkaRecordDeserializationSchema<String>() {
                @Override
                public void deserialize(ConsumerRecord<byte[], byte[]> record, Collector<String> out) throws IOException {
                    String value = new String(record.value(), StandardCharsets.UTF_8);
                    out.collect(value);
                }

                @Override
                public TypeInformation<String> getProducedType() {
                    return TypeInformation.of(String.class);
                }
            })
            .setStartingOffsets(OffsetsInitializer.earliest())
            // 添加Kafka客户端属性以提高稳定性
            .setProperty(enable.auto.commit, false) // 由Flink管理偏移量提交
            .setProperty(session.timeout.ms, 45000)
            .setProperty(max.poll.interval.ms, 300000)
            .setProperty(heartbeat.interval.ms, 10000)
            .setProperty(retry.backoff.ms, 1000)
            .setProperty(reconnect.backoff.max.ms, 10000)
            .setProperty(reconnect.backoff.ms, 1000)
            .build();

    // 4. 从Kafka读取数据
    DataStream<String> logStream = env.fromSource(
            kafkaSource,
            WatermarkStrategy.noWatermarks(),
            Kafka Log Source
    );

    // 5. 解析日志数据
    DataStream<LogEntry> parsedLogStream = logStream.flatMap(new FlatMapFunction<String, LogEntry>() {
        @Override
        public void flatMap(String value, Collector<LogEntry> out) throws Exception {
            try {
                String[] parts = value.split(\\|, 3);
                if (parts.length == 3) {
                    Date timestamp = DATE_FORMAT.parse(parts[0]);
                    String logLevel = parts[1];
                    String message = parts[2];
                    LogEntry entry = new LogEntry(timestamp, logLevel, message);
                    LOG.info(Parsed log entry: {}, entry);
                    out.collect(entry);
                } else {
                    LOG.warn(Failed to parse log entry (wrong part count): {}, value);
                }
            } catch (ParseException e) {
                LOG.warn(Failed to parse log entry: {}, value, e);
            } catch (Exception e) {
                LOG.error(Unexpected error while parsing log entry: {}, value, e);
            }
        }
    });

    // 6. 统计日志级别分布
    KeyedStream<LogEntry, String> levelKeyedStream = parsedLogStream.keyBy(entry -> entry.getLogLevel());
    DataStream<Tuple2<String, Long>> levelCountStream = levelKeyedStream
            .window(TumblingProcessingTimeWindows.of(Duration.ofMinutes(1))) // 每1分钟统计一次
            .aggregate(
                    new AggregateFunction<LogEntry, Long, Long>() {
                        @Override
                        public Long createAccumulator() {
                            return 0L;
                        }

                        @Override
                        public Long add(LogEntry value, Long accumulator) {
                            return accumulator + 1;
                        }

                        @Override
                        public Long getResult(Long accumulator) {
                            return accumulator;
                        }

                        @Override
                        public Long merge(Long a, Long b) {
                            return a + b;
                        }
                    },
                    new ProcessWindowFunction<Long, Tuple2<String, Long>, String, TimeWindow>() {
                        @Override
                        public void process(String level, Context context, Iterable<Long> elements, Collector<Tuple2<String, Long>> out) throws Exception {
                            long count = elements.iterator().next();
                            out.collect(new Tuple2<>(level, count));
                        }
                    }
            );
    levelCountStream.print(LogLevelCount);

    // 7. 统计错误日志数量
    DataStream<LogEntry> errorLogStream = parsedLogStream.filter(entry -> entry.getLogLevel().equals(ERROR));
    KeyedStream<LogEntry, String> errorKeyedStream = errorLogStream.keyBy(entry -> ERROR); // 所有错误日志为同一个键
    DataStream<Tuple2<String, Long>> errorCountStream = errorKeyedStream.window(TumblingProcessingTimeWindows.of(Duration.ofMinutes(1)))
            .aggregate(
                    new AggregateFunction<LogEntry, Long, Long>() {
                        @Override
                        public Long createAccumulator() {
                            return 0L;
                        }

                        @Override
                        public Long add(LogEntry value, Long accumulator) {
                            return accumulator + 1;
                        }

                        @Override
                        public Long getResult(Long accumulator) {
                            return accumulator;
                        }

                        @Override
                        public Long merge(Long a, Long b) {
                            return a + b;
                        }
                    },
                    new ProcessWindowFunction<Long, Tuple2<String, Long>, String, TimeWindow>() {
                        @Override
                        public void process(String key, Context context, Iterable<Long> elements, Collector<Tuple2<String, Long>> out) {
                            long count = elements.iterator().next();
                            out.collect(new Tuple2<>(ERROR_COUNT, count));
                        }
                    }
            );

    errorCountStream.print(ErrorCount);

    // 8. 按小时统计日志量
    DataStream<Tuple2<String, LogEntry>> hourlyLogStream = parsedLogStream.map(new MapFunction<LogEntry, Tuple2<String, LogEntry>>() {
        @Override
        public Tuple2<String, LogEntry> map(LogEntry entry) throws Exception {
            String hourKey = new SimpleDateFormat(yyyy-MM-dd HH).format(entry.getTimestamp());
            return new Tuple2<>(hourKey, entry);
        }
    }).returns(new TypeHint<Tuple2<String, LogEntry>>() {});

    KeyedStream<Tuple2<String, LogEntry>, String> hourlyKeyedStream = hourlyLogStream.keyBy(tuple -> tuple.f0);
    DataStream<Tuple3<String, Long, Long>> hourlyCountStream = hourlyKeyedStream
            .window(TumblingProcessingTimeWindows.of(Duration.ofHours(1)))
            .aggregate(
                    new AggregateFunction<Tuple2<String, LogEntry>, Long, Long>() {
                        @Override
                        public Long createAccumulator() {
                            return 0L;
                        }

                        @Override
                        public Long add(Tuple2<String, LogEntry> value, Long accumulator) {
                            return accumulator + 1;
                        }

                        @Override
                        public Long getResult(Long accumulator) {
                            return accumulator;
                        }

                        @Override
                        public Long merge(Long a, Long b) {
                            return a + b;
                        }
                    },
                    new ProcessWindowFunction<Long, Tuple3<String, Long, Long>, String, TimeWindow>() {
                        @Override
                        public void process(String hour, Context context, Iterable<Long> elements, Collector<Tuple3<String, Long, Long>> out) {
                            long count = elements.iterator().next();
                            out.collect(new Tuple3<>(hour, count, context.window().getEnd()));
                        }
                    }
            );

    hourlyCountStream.print(HourlyLogCount);

    // 9. 启动任务
    env.execute(Log Analysis Demo);
}

} 七、测试与验证

  1. 创建测试主题 在Kafka中创建日志主题:

创建日志主题

$KAFKA_HOME/bin/kafka-topics.sh --create --bootstrap-server localhost:9092 --replication-factor 1 --partitions 1 --topic app_logs 2. 发送测试数据 使用Kafka生产者发送测试日志数据:

启动Kafka生产者

$KAFKA_HOME/bin/kafka-console-producer.sh --broker-list localhost:9092 --topic app_logs

输入以下测试数据(每行一条)

2025-10-05 12:30:45|INFO|Application started 2025-10-05 12:31:10|DEBUG|Connecting to database 2025-10-05 12:31:15|ERROR|Failed to connect to database 2025-10-05 12:32:00|INFO|Retry connection to database 2025-10-05 12:32:05|INFO|Database connected successfully 2025-10-05 12:33:20|WARN|Low disk space warning 2025-10-05 12:34:00|ERROR|Out of memory error 2025-10-05 13:00:00|INFO|Daily report generated 3. 运行程序并验证结果 在IDE中运行LogAnalysisDemo类的main方法,观察控制台输出。您应该能看到类似以下的输出:

LogLevelCount: INFO, 4 LogLevelCount: ERROR, 2 LogLevelCount: DEBUG, 1 LogLevelCount: WARN, 1 ErrorCount: ERROR_COUNT, 2 HourlyLogCount: 2025-10-05 12, 7, 1730793600000 HourlyLogCount: 2025-10-05 13, 1, 1730797200000 八、性能优化与最佳实践

  1. 并行度调优 合理设置并行度可以充分利用集群资源,提高处理性能:

// 设置全局并行度 env.setParallelism(4); 2. 避免数据倾斜 数据倾斜会导致部分任务处理速度慢,整体性能下降。可以通过以下方式避免:

合理设计键(Key),避免热点键 使用自定义分区器 对倾斜的数据进行预聚合 3. 状态管理 对于有状态的操作,合理管理状态可以提高程序的可靠性和性能:

使用Checkpoint确保状态一致性 对于大状态,考虑使用RocksDB后端 定期清理不需要的状态 九、总结与展望 本文详细介绍了Flink的数据转换操作,包括基本转换、键控转换和多流转换,并结合Kafka Source实现了一个实时日志分析系统。通过这些转换操作,我们可以灵活地处理和分析实时数据流,实现各种复杂的业务需求。

在后续文章中,我们将继续深入探讨Flink的窗口计算、状态管理以及数据输出(Sink)等核心概念,包括各种Sink连接器的使用、输出格式配置、可靠性保证机制等内容,帮助您更全面地掌握Flink的端到端数据处理能力。敬请关注!

源文来自:https://ibb.co/MDQkWZyC https://ibb.co/nNWg0jRs https://ibb.co/KzmyDWFV https://ibb.co/Csv0J8dB https://ibb.co/wZswyC6m https://ibb.co/SXzSYrqQ https://ibb.co/J15tMn6 https://ibb.co/6cQDx1Lq https://ibb.co/PsZXYnHZ https://ibb.co/4g2KhPpZ https://ibb.co/601JZWPW https://ibb.co/7tQD3g4g https://ibb.co/Cs1VDZGR https://ibb.co/Zp2440Xz https://ibb.co/HLqcjt4n https://ibb.co/cXyRbrxk https://ibb.co/n8PRjYJL https://ibb.co/Z6Mt9JZ0 https://ibb.co/xSxQ2RHt https://ibb.co/Wvw6Kbsn https://ibb.co/8gC5xmGb https://ibb.co/3y1pg7w7 https://ibb.co/dsBZF6Jr https://ibb.co/S7xQQv33 https://ibb.co/RT2fkZqM https://ibb.co/Qjc60NFx https://ibb.co/1t0GYjgf https://ibb.co/99BMc5tQ https://ibb.co/nskTBCwK https://ibb.co/fYdLhcD0 https://ibb.co/Zz4kr7ZM https://ibb.co/Zz7ZGY0R https://ibb.co/PZkcGyHB https://ibb.co/fY0kxT3q https://ibb.co/VcBdsSzM https://ibb.co/nqpWHtLk https://ibb.co/LhpkJqPm https://ibb.co/GQDBx30p https://ibb.co/MyLXxdbj https://ibb.co/SDw34Cx5 https://ibb.co/YFB1m4kG https://ibb.co/7xmXqb83 https://ibb.co/cRN57R7 https://ibb.co/zTY3mRV5 https://ibb.co/vxZVS0G6 https://ibb.co/whSQB5x2 https://ibb.co/351Nb4sq https://ibb.co/k2zZnHNm https://ibb.co/BKS6535Z https://ibb.co/b5W3MXsS https://ibb.co/bMmW9LGz https://ibb.co/tpkmHPJJ https://ibb.co/7xvDgzKx https://ibb.co/5QRqhRs https://ibb.co/svtk6Rvy https://ibb.co/rft9PjVW https://ibb.co/M5cQ7Dtr https://ibb.co/6crvXXkW https://ibb.co/Q3g4J2Lf https://ibb.co/kspyPY78 https://ibb.co/v43Ty79c https://ibb.co/C33gpQ6X https://ibb.co/KxGZPWDp https://ibb.co/jkZnzysN https://ibb.co/HJ6Z1mZ https://ibb.co/390f7HjY https://ibb.co/xPT0DdD https://ibb.co/9Hw5Z83r https://ibb.co/n88fN1qx https://ibb.co/JWfF2Tmd https://ibb.co/PzcJZFkX https://ibb.co/TBXKGbLX https://ibb.co/XP6RV9M https://ibb.co/Rp6VfKPq https://ibb.co/mCpDb9PM https://ibb.co/N6tLstW0 https://ibb.co/sd6wy49p https://ibb.co/Rp0Rr7sL https://ibb.co/RkkBfTKR https://ibb.co/ttTwqB7 https://ibb.co/7NJXzxxm https://ibb.co/k6Gzmgrg https://ibb.co/r2x1YGSZ https://ibb.co/WWVZT5yH https://ibb.co/kgQdn7CM https://ibb.co/8Dbw5yTV https://ibb.co/PsvvnjZ1 https://ibb.co/kpJ7pth https://ibb.co/V0KhJhjS https://ibb.co/G3FbzX9n https://ibb.co/4n0nbV8h https://ibb.co/cKWkwQ3p https://ibb.co/hRRRzy8z https://ibb.co/391hkg1p https://ibb.co/XZZ565WY https://ibb.co/rGnB2Z5k https://ibb.co/5gfRNv89 https://ibb.co/FkH5jzJb https://ibb.co/9mhnTD9Z https://ibb.co/Y7xJ0kYc https://ibb.co/mFFcnk8B https://ibb.co/4ny1rxXP https://ibb.co/FL7zdYDF https://ibb.co/mVvnLWDp https://ibb.co/9mcr1FF5 https://ibb.co/chZC7TJw https://ibb.co/b5QXRTHK https://ibb.co/mCtDCKVS https://ibb.co/nMS4ywSm https://ibb.co/ymnN8KG3 https://ibb.co/0Vc9cHFn https://ibb.co/B2rF9WNQ https://ibb.co/jPvs0GVY https://ibb.co/BFKZNRX https://ibb.co/prfg0FgD https://ibb.co/0yT54J7j https://ibb.co/8LLtvCR6 https://ibb.co/ynQF1rMp https://ibb.co/rRdnYtTb https://ibb.co/HTv9Lj2T https://ibb.co/PsfHS1B6 https://ibb.co/FLvhfpp6 https://ibb.co/SwCNfP7N https://ibb.co/rRjCGXSC https://ibb.co/0RScM1jY https://ibb.co/BKvZzFd6 https://ibb.co/q328kgcS https://ibb.co/k2W7tb2d https://ibb.co/HLW3RdSk https://ibb.co/K8Whpnh https://ibb.co/k2Vcmrqg https://ibb.co/sXfvrsy https://ibb.co/Z6TntSwW https://ibb.co/z1BP1ny https://ibb.co/ch6m6c3X https://ibb.co/B5bJcMK2 https://ibb.co/dsRCVw4c https://ibb.co/kdNsqkm https://ibb.co/d4JT5sc7 https://ibb.co/PZRqDQs3 https://ibb.co/twtb33yb https://ibb.co/HLqcjt4n https://ibb.co/ycMv6S7S https://ibb.co/ycNVKsJ5 https://ibb.co/hF6MRbqJ https://ibb.co/HfsdMN9F https://ibb.co/zT8RCmYb https://ibb.co/JwnvR4bF https://ibb.co/SwVPk89y https://ibb.co/gF6h9Q3t https://ibb.co/CKsB5qcc https://ibb.co/JwVFWb0X https://ibb.co/3yqdJ0Zs https://ibb.co/W4qQL1qf https://ibb.co/YTdtwcmw https://ibb.co/3YSvRsDt https://ibb.co/pvFzn6JL https://ibb.co/jkGfkByX https://ibb.co/DZJtSsW https://ibb.co/0RyT9r52 https://ibb.co/d4NRRChn https://ibb.co/HLFCt968 https://ibb.co/k2YvRJGm https://ibb.co/cS1HFqmC https://ibb.co/RTghzhtC https://ibb.co/cSjWKVHG https://ibb.co/b5v46XJd https://ibb.co/4ZW7DB52 https://ibb.co/DD7HRzyX https://ibb.co/j9Bc09L5 https://ibb.co/Xf42dSR0 https://ibb.co/7xVnsFgR https://ibb.co/nNwFRBjz https://ibb.co/Lh1HD1m7 https://ibb.co/4n2sWN3V https://ibb.co/TsXFGP4 https://ibb.co/MQwnR9T https://ibb.co/GQ1C8PkK https://ibb.co/jvmktbw4 https://ibb.co/Rd8KgFg https://ibb.co/6726749v https://ibb.co/Gf8TnXKK https://ibb.co/N2NLkjN8 https://ibb.co/XZksRwts https://ibb.co/v4cmSt2K https://ibb.co/kRfJSxS https://ibb.co/WWc7nS7s https://ibb.co/PzPmhKLb https://ibb.co/d47sNY9q https://ibb.co/Jjm5pTNz https://ibb.co/kgqYRzXY https://ibb.co/B5Hyv9fh https://ibb.co/0yNXjh11 https://ibb.co/RG4W3nrj https://ibb.co/tTCYHDdK https://ibb.co/4gtqq3sx https://ibb.co/xKSfvhw9 https://ibb.co/rfQjx9XD https://ibb.co/C5v9kGzG https://ibb.co/HpHVjwnr https://ibb.co/xKCvyHzK https://ibb.co/HL8rK4MN https://ibb.co/C5QSRhgm https://ibb.co/nsKn4yN6 https://ibb.co/67ZvhqYG https://ibb.co/KzhYXky4 https://ibb.co/m52Bfxnj https://ibb.co/60RrVPDR https://ibb.co/35Ld9yG1 https://ibb.co/KcD663S5 https://ibb.co/yn22yC1r https://ibb.co/8DvJ4ZDd https://ibb.co/pjPYNNqP https://ibb.co/G3QChHMm https://ibb.co/c07m1M0 https://ibb.co/S7XVxvNB https://ibb.co/fYjLsSG9 https://ibb.co/2YMGT29J https://ibb.co/mF1K8Y2b https://ibb.co/bf2P3Rk https://ibb.co/LXNSsmNS https://ibb.co/v4yBVc3x https://ibb.co/7JKPBDSc https://ibb.co/4wSKv05T https://ibb.co/hJXz0Cc9 https://ibb.co/DfZN9qVf https://ibb.co/nqnN2b9L https://ibb.co/fzqB1TJD https://ibb.co/gkD5fpF https://ibb.co/rGjChVYD https://ibb.co/SDHndBkQ https://ibb.co/hRp1ZRQq https://ibb.co/Xk5wt51C https://ibb.co/bgMRDgJn https://ibb.co/MD59SDdM https://ibb.co/Q3Qw3dRb https://ibb.co/ZpS9Xz16 https://ibb.co/3mDfVGtJ https://ibb.co/7dDPsZcC https://ibb.co/3yH5SrZh https://ibb.co/xqRxZmB6 https://ibb.co/qLj0gm1Q https://ibb.co/ZR09BByD https://ibb.co/6R4TW7mV https://ibb.co/HftZ4r4K https://ibb.co/r24qhjNq https://ibb.co/99yw0RwW https://ibb.co/LhxwwC8L https://ibb.co/XfFBr1H9 https://ibb.co/JFnK5CvN https://ibb.co/8Dwz4qq7 https://ibb.co/ZRWRRj6C https://ibb.co/LDct6HCK https://ibb.co/vvhLB1F7 https://ibb.co/qLHj7G0L https://ibb.co/qZ7BH2J https://ibb.co/wZtH83bZ https://ibb.co/DHC88Ln0 https://ibb.co/fGSyRwcc https://ibb.co/n8znHtTB https://ibb.co/rGPLMWBz https://ibb.co/HLX3wdjK https://ibb.co/PZzhVp8Z https://ibb.co/p6JkPjKP https://ibb.co/chhNHpT8 https://ibb.co/B29NGP6W https://ibb.co/HTy4RznB https://ibb.co/p5JXpX3 https://ibb.co/8gy777fL https://ibb.co/Kz5ctLNp https://ibb.co/yFXhJ8fr https://ibb.co/Z1tk9MS1 https://ibb.co/Dg876mbM https://ibb.co/7xbhpsRn https://ibb.co/W4jtMngZ https://ibb.co/jZ19Fd4J https://ibb.co/wFFFwZgt https://ibb.co/pvjQ5YTb https://ibb.co/svRNW5mB https://ibb.co/7JDZvztG https://ibb.co/6Rkw54DM https://ibb.co/v4vJ7Mts https://ibb.co/2016VmXM https://ibb.co/DPKrxCbh https://ibb.co/KzBK6tjv https://ibb.co/SXrQLkVw https://ibb.co/k6w9Xd4K https://ibb.co/s98CmYGB https://ibb.co/FqLV4hG5 https://ibb.co/HTrW62GX https://ibb.co/WWcSkBP5 https://ibb.co/x82Jj7P8 https://ibb.co/QFLJyH2T https://ibb.co/WNxTCJq3 https://ibb.co/BHbx8KQr https://ibb.co/BVDz1pgt https://ibb.co/rG6YNWmj https://ibb.co/RkrQpNwV https://ibb.co/p6Stnj1F https://ibb.co/P8YSmB2 https://ibb.co/5hdth8h0 https://ibb.co/dwwvpKJ0 https://ibb.co/qLrqzC27 https://ibb.co/Cdg3Pfm https://ibb.co/v6Vy3g0c https://ibb.co/tprYZG91 https://ibb.co/N2Jtzstx https://ibb.co/8LRpJcz4 https://ibb.co/j9wZ38qv https://ibb.co/MxG3mtMy https://ibb.co/7NykqZ0w https://ibb.co/JjPQPVpJ https://ibb.co/Fk1h2cJF https://ibb.co/ch7XK7BM https://ibb.co/S4RVjNBS https://ibb.co/spn5LdTm https://ibb.co/Gf4w1hdW https://ibb.co/pBpmmnnb https://ibb.co/xSLvz0nh https://ibb.co/v4M6k80k https://ibb.co/Y7NxFzj8 https://ibb.co/bMY9m3Yc https://ibb.co/jvwhFKyT https://ibb.co/d4TZ5NGz https://ibb.co/C3LCx846

源码地址:https://gitee.com/daimajiangxin/flink-learning

点赞
收藏
评论区
推荐文章
小天 小天
2年前
Kafka入门简介
简介ApacheKafka是一个分布式流处理平台。它能够发布和订阅数据流持久化数据流处理数据流&nbsp;其广泛应用于:构建实时流数据管道,在系统或应用程序之间可靠地获取数据。构建实时流应用程序以转换
Stella981 Stella981
3年前
Apache Flink漏洞复现
简介ApacheFlink是高效和分布式的通用数据处理平台,由Apache软件基金会开发的开源流处理框架,其核心是用Java和Scala编写的分布式流数据流引擎(简单来说,就是跟spark类似)。Flink具有监控API,可用于查询"正在运行的jobs"和"最近完成的jobs"的状态和统计信息。该监控API被用于Flink自
使用Flink完成流数据统计 | 京东云技术团队
Flink程序构建的基本单元是stream和transformation(DataSet实质上也是stream)。stream是一个中间结果数据,transformation对数据的加工和操作,该操作以一个或多个stream为输入,计算输出一个或多个stream为结果,最后可以sink来存储数据。
幂简集成 幂简集成
11个月前
免费YAML校验API:一站式使用与集成指南
本文将以YAML转其它格式API服务为例,详细探讨如何利用此API进行格式校验及数据转换。通过实际操作,读者将能够提高数据处理的效率和准确性,进而优化开发流程,确保项目的顺利进行。
Flink 与Flink可视化平台StreamPark教程(开篇)
本文分享自天翼云开发者社区《》,作者:ln介绍Flink是一个大数据流处理引擎,可以为不同行业提供实时大数据处理解决方案。随着Flink的快速发展和改进,世界各地的许多公司现在都能看到它的存在。目前,北美、欧洲和金砖国家都是全球Flink应用的热门地区。当