Java 8 Stream API学习总结

Wesley13
• 阅读 798

Java 8 API添加了一个新的抽象称为流Stream,可以让你以一种声明的方式处理数据。Stream API可以极大提高Java程序员的生产力,让程序员写出高效率、干净、简洁的代码。这种风格将要处理的元素集合看作一种流, 流在管道中传输, 并且可以在管道的节点上进行处理, 比如筛选, 排序,聚合等。元素流在管道中经过中间操作(intermediate operation)的处理,最后由最终操作(terminal operation)得到前面处理的结果。

这一次为什么要系统性的总结一下 Java 8 Stream API 呢?说得简单点,我们先不论性能,我们就是为了 装x ,而且要让这个 x 装得再优秀一些,仅此而已!

Java 8 Stream API学习总结

Stream基础知识

流程

创建流流的中间操作流的最终操作

创建流

我们需要把哪些元素放入流中,常见的api有:

// 使用List创建流
list.stream()

// 使用一个或多个元素创建流
Stream.of(T value)
Stream.of(T... values)

// 使用数组创建流
Arrays.stream(T[] array)

// 创建一个空流
Stream.empty()

// 两个流合并
Stream.concat(Stream<? extends T> a, Stream<? extends T> b)

// 无序无限流
Stream.generate(Supplier<T> s)

// 通过迭代产生无限流
Stream.iterate(final T seed, final UnaryOperator<T> f)

流的中间操作

// 元素过滤
filter
limit
skip
distinct

// 映射
map
flatmap

// 排序

流的最终操作

通过流对元素的最终操作,我们想得到一个什么样的结果

构造测试数据

员工实体类

/**
 * 员工实体类
 * @author Erwin Feng
 * @since 2020/4/27 2:10
 */
public class Employee {

    /** 员工ID */
    private Integer id;

    /** 员工姓名 */
    private String name;

    /** 员工薪资 */
    private Double salary;
    
    /** 构造方法、getter and setter、toString */
}

测试数据列表

[
    {
        "id":1,
        "name":"Jacob",
        "salary":1000
    },
    {
        "id":2,
        "name":"Sophia",
        "salary":2000
    },
    {
        "id":3,
        "name":"Rose",
        "salary":3000
    },
    {
        "id":4,
        "name":"Lily",
        "salary":4000
    },
    {
        "id":5,
        "name":"Daisy",
        "salary":5000
    },
    {
        "id":6,
        "name":"Jane",
        "salary":5000
    },
    {
        "id":7,
        "name":"Jasmine",
        "salary":6000
    },
    {
        "id":8,
        "name":"Jack",
        "salary":6000
    },
    {
        "id":9,
        "name":"Poppy",
        "salary":7000
    }
]

Stream API Test

filter 过滤

需求:查找薪酬为5000的员工列表

List<Employee> employees = list.stream().filter(employee -> employee.getSalary() == 5000)
        .peek(System.out::println)
        .collect(Collectors.toList());
Assert.assertEquals(2, employees.size());

map 映射

需求:将薪酬大于5000的员工放到Leader对象中

List<Leader> leaders = list.stream().filter(employee -> employee.getSalary() > 5000).map(employee -> {
    Leader leader = new Leader();
    leader.setName(employee.getName());
    leader.setSalary(employee.getSalary());
    return leader;
}).peek(System.out::println).collect(Collectors.toList());
Assert.assertEquals(3, leaders.size());

flatMap 水平映射

需求:将多维的列表转化为单维的列表

说明:

我们将薪酬在1000-3000的分为一个列表,4000-5000分为一个列表,6000-7000分为一个列表。

将这三个列表组合在一起形成一个多维列表。

List<Employee> employees = multidimensionalList.stream().flatMap(Collection::stream).collect(Collectors.toList());
Assert.assertEquals(9, employees.size());

sorted 排序

需求:根据薪酬排序

// 薪酬从小到大排序
List<Employee> employees = list.stream().sorted(Comparator.comparing(Employee::getSalary)).peek(System.out::println).collect(Collectors.toList());

// 薪酬从大到小排序
List<Employee> employees2 = list.stream().sorted(Comparator.comparing(Employee::getSalary).reversed()).peek(System.out::println).collect(Collectors.toList());

min 最小值

double minValue = list.stream().mapToDouble(Employee::getSalary).min().orElse(0);
Assert.assertEquals(1000, minValue, 0.0);

Employee employee = list.stream().min(Comparator.comparing(Employee::getSalary)).orElse(null);
assert employee != null;
Assert.assertEquals(employee.getSalary(), minValue, 0.0);

max 最大值

double maxValue = list.stream().mapToDouble(Employee::getSalary).max().orElse(0);
Assert.assertEquals(7000, maxValue, 0.0);

average 平均值

double sum = list.stream().mapToDouble(Employee::getSalary).sum();
double averageValue = list.stream().mapToDouble(Employee::getSalary).average().orElse(0);
Assert.assertEquals(sum / list.size(), averageValue, 0.0);

match 匹配

// allMatch 集合中的元素都要满足条件才会返回true
// 薪酬都是大于等于1000的
boolean isAllMatch = list.stream().allMatch(employee -> employee.getSalary() >= 1000);
Assert.assertTrue(isAllMatch);

// anyMatch 集合中只要有一个元素满足条件就会返回true
// 有没有薪酬大于等于7000
boolean isAnyMatch = list.stream().anyMatch(employee -> employee.getSalary() >= 7000);
Assert.assertTrue(isAnyMatch);

// noneMatch 集合中没有元素满足条件才会返回true
// 没有薪酬小于1000的
boolean isNoneMatch = list.stream().noneMatch(employee -> employee.getSalary() < 1000);
Assert.assertTrue(isNoneMatch);

distinct 去重

默认的 distinct() 不接收参数,是根据 Object#equals(Object) 去重。根据API介绍,这是一个有中间状态的操作。

List<Employee> employees = list.stream().distinct().collect(Collectors.toList());
Assert.assertEquals(9, employees.size());

如果我们要根据对象中的某个属性去重的,可以使用 StreamEx

// 使用StreamEx去重
List<Employee> employees2 = StreamEx.of(list).distinct(Employee::getSalary).collect(Collectors.toList());
Assert.assertEquals(7, employees2.size());

当然也可以使用JDK Stream API

private static <T>Predicate<T> distinctByKey(Function<? super T, ?> keyExtractor) {
    Map<Object, Boolean> result = new ConcurrentHashMap<>();
    return t -> result.putIfAbsent(keyExtractor.apply(t), Boolean.TRUE) == null;
}

List<Employee> employees3 = list.stream().filter(distinctByKey(Employee::getSalary)).collect(Collectors.toList());
Assert.assertEquals(7, employees3.size());

reduce 裁减

需求:计算薪酬总和

// 先将员工列表转换为薪酬列表
// 再计算薪酬总和
double salarySum = list.stream().map(Employee::getSalary).reduce(Double::sum).orElse(0.0);
double sum = list.stream().mapToDouble(Employee::getSalary).sum();
Assert.assertEquals(salarySum, sum, 0.0);

另外,我们也可以设定一个累加函数的标识值

double salarySum5 = list.stream().map(Employee::getSalary).reduce(1.00, Double::sum);
Assert.assertEquals(salarySum5, sum + 1, 0.0);

collector 流的终止结果

// joining 拼接字符串
String employeeNames = list.stream().map(Employee::getName).collect(Collectors.joining(", "));
System.out.println(employeeNames); // Jacob, Sophia, Rose, Lily, Daisy, Jane, Jasmine, Jack, Poppy

// 返回一个List
List<String> employeeNameList = list.stream().map(Employee::getName).collect(Collectors.toList());
System.out.println(employeeNameList);

// 返回一个Set
Set<String> employeeNameSet = list.stream().map(Employee::getName).collect(Collectors.toSet());
System.out.println(employeeNameSet);

// 返回一个Vector
Vector<String> employeeNameVector = list.stream().map(Employee::getName).collect(Collectors.toCollection(Vector::new));
System.out.println(employeeNameVector);

// 返回一个Map
Map<Integer, String> employeesMap = list.stream().collect(Collectors.toMap(Employee::getId, Employee::getName));
System.out.println(employeesMap);

count 统计

需求:薪酬为5000的员工数

不使用流

int count2 = 0;
for (Employee employee : list) {
    if (employee.getSalary() == 5000) {
        count2++;
    }
}
System.out.println(count2);

使用流

long count3 = list.stream().filter(employee -> employee.getSalary() == 5000).count();
Assert.assertEquals(count3, count2);

summarizingDouble 统计分析

DoubleSummaryStatistics employeeSalaryStatistics = list.stream().collect(Collectors.summarizingDouble(Employee::getSalary));
System.out.println("employee salary statistics:" + employeeSalaryStatistics);

DoubleSummaryStatistics employeeSalaryStatistics2 = list.stream().mapToDouble(Employee::getSalary).summaryStatistics();
System.out.println("employee salary statistics2:" + employeeSalaryStatistics2);

{count=9, sum=39000.000000, min=1000.000000, average=4333.333333, max=7000.000000}

partitioningBy 分区

分成满足条件(true)和不满足条件(false)两个区

需求:找出薪酬大于5000的员工

Map<Boolean, List<Employee>> map = list.stream().collect(Collectors.partitioningBy(employee -> employee.getSalary() > 5000));
System.out.println("true:" + map.get(Boolean.TRUE));
System.out.println("false:" + map.get(Boolean.FALSE));

true:[Employee{id=7, name='Jasmine', salary=6000.0}, Employee{id=8, name='Jack', salary=6000.0}, Employee{id=9, name='Poppy', salary=7000.0}]

false:[Employee{id=1, name='Jacob', salary=1000.0}, Employee{id=2, name='Sophia', salary=2000.0}, Employee{id=3, name='Rose', salary=3000.0}, Employee{id=4, name='Lily', salary=4000.0}, Employee{id=5, name='Daisy', salary=5000.0}, Employee{id=6, name='Jane', salary=5000.0}]

groupingBy 分组

需求:根据员工薪酬分组

Map<Double, List<Employee>> map = list.stream().collect(Collectors.groupingBy(Employee::getSalary));
System.out.println(map);

再举一个例子:薪酬 一> 总和(薪酬*员工数)

Map<Double, Double> map3 = list.stream().collect(Collectors.groupingBy(Employee::getSalary, Collectors.summingDouble(Employee::getSalary)));
System.out.println(map3);

parallel 平行计算

简单的说,就是启动多个线程计算

private static void cal(Employee employee) {
    try {
        long sleepTime = employee.getSalary().longValue();
        TimeUnit.MILLISECONDS.sleep(sleepTime);
        logger.info("employee name: {}", employee.getName());
    } catch (InterruptedException e) {
        e.printStackTrace();
    }
}

list.stream().parallel().forEach(StreamTest::cal);
2020-05-15 01:47:14.231 [ForkJoinPool.commonPool-worker-4] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jacob
2020-05-15 01:47:15.226 [ForkJoinPool.commonPool-worker-2] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Sophia
2020-05-15 01:47:16.226 [ForkJoinPool.commonPool-worker-1] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Rose
2020-05-15 01:47:17.226 [ForkJoinPool.commonPool-worker-3] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Lily
2020-05-15 01:47:18.225 [main] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jane
2020-05-15 01:47:18.228 [ForkJoinPool.commonPool-worker-7] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Daisy
2020-05-15 01:47:19.226 [ForkJoinPool.commonPool-worker-5] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jack
2020-05-15 01:47:19.228 [ForkJoinPool.commonPool-worker-6] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Jasmine
2020-05-15 01:47:21.234 [ForkJoinPool.commonPool-worker-4] INFO  com.fengwenyi.study_stream.StreamTest - employee name: Poppy

file 文件操作

try (PrintWriter printWriter = new PrintWriter(Files.newBufferedWriter(Paths.get(tempFilePath)))) { // 使用 try 自动关闭流
    list.forEach(printWriter::println);
    list.forEach(employee -> printWriter.println(employee.getName())); // 将员工的姓名写到文件中
}

// 从文件中读取员工的姓名
List<String> s = Files.lines(Paths.get(tempFilePath)).peek(System.out::println).collect(Collectors.toList());

测试代码

Study Java 8 Stream API

Java 8 Stream API学习总结

学习链接

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Wesley13 Wesley13
3年前
JDK1.8 之Stream API总结
Stream是Java8新增加的类,用来补充集合类。Stream代表数据流,流中的数据元素的数量可能是有限的,也可能是无限的。Stream和其它集合类的区别在于:其它集合类主要关注与有限数量的数据的访问和有效管理(增删改),而Stream并没有提供访问和管理元素的方式,而是通过声明数据源的方式,利用可计算的操作在数据源上执行,当然
Wesley13 Wesley13
3年前
Java日期时间API系列31
  时间戳是指格林威治时间1970年01月01日00时00分00秒起至现在的总毫秒数,是所有时间的基础,其他时间可以通过时间戳转换得到。Java中本来已经有相关获取时间戳的方法,Java8后增加新的类Instant等专用于处理时间戳问题。 1获取时间戳的方法和性能对比1.1获取时间戳方法Java8以前
Wesley13 Wesley13
3年前
Java学习:Stream流式思想
Stream流Java8API添加了一种新的机制——Stream(流)。Stream和IO流不是一回事。流式思想:像生产流水线一样,一个操作接一个操作。使用Stream流的步骤:数据源→转换成流→操作1→操作2→……数据源(source):可以是集合、数组等。St
Wesley13 Wesley13
3年前
Java 8新特性之Stream 概念
Java8中有两大最为重要的改变。第一个是Lambda表达式;另外一个则是StreamAPI(java.util.stream.\)。Stream是Java8中处理集合的关键抽象概念,它可以指定你希望对集合进行的操作,可以执行非常复杂的查找、过滤和映射数据等操作。使用StreamAPI对集合数据进行操作,就类似于使用SQL执行
Wesley13 Wesley13
3年前
Java8 新特性之集合操作Stream
Java8新特性之集合操作StreamStream简介Java8引入了全新的StreamAPI。这里的Stream和I/O流不同,它更像具有Iterable的集合类,但行为和集合类又有所不同。stream是对集合对象功能的增强,它专注于对集合对象进行各种非常便利、高效的聚合操作,或者大批量数据操作。
Wesley13 Wesley13
3年前
Java 8 Stream原理解析
说起Java8,我们知道Java8大改动之一就是增加函数式编程,而StreamAPI便是函数编程的主角,StreamAPI是一种流式的处理数据风格,也就是将要处理的数据当作流,在管道中进行传输,并在管道中的每个节点对数据进行处理,如过滤、排序、转换等。首先我们先看一个使用StreamAPI的示例,具体代码如下: !(htt
Stream流处理快速上手最佳实践 | 京东物流技术团队
一引言JAVA1.8得益于Lambda所带来的函数式编程,引入了一个全新的Stream流概念Stream流式思想类似于工厂车间的“生产流水线”,Stream流不是一种数据结构,不保存数据,而是对数据进行加工处理。Stream可以看作是流水线上的一个工序。在