OpenCV Face Detection

Stella981
• 阅读 693

[TOC]


  原教程来源于OpenCV Face Recognition;作者是Adrian Rosebrock

  如果想要学习的话,建议看原链接教程,本文为本人笔记内容;


  在这篇教程中,将学习如何使用OpenCV实现人脸识别。为了建立人脸识别系统,需要执行下面几个步骤:

  • Face Detection:人脸检测,从给定的图片中检测人脸位置信息;
  • Extract face embeddings:提取人脸特征;利用深度学习,对上一步中得到的人脸图像提取embeddings;
  • Train a face recognition model:训练,利用人脸的embeddings,训练SVM分类器;
  • Recognize face:识别;从图像或视频中检测人脸;

  那么下面将从这几个方面来叙述;

1. Face Detection and Extract Face Embeddings

  该步骤包含两个部分,人脸检测、提取人脸特征;这两个部分都是基于深度学习做的;首先,利用训练好的人脸检测模型对待检测图像进行人脸检测,提取人脸位置信息;其次,将提取的人脸图像输入到Embeddings模型中,提取人脸的Embedddings,是一个128维的向量;该向量用于下一步训练一个SVM的人脸识别分类器;

# 人脸检测模型:caffe
./face_detection_model/deploy.prototxt
./face_detection_model/res10_300x300_ssd_iter_140000.caffemodel

# 加载方式:
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)


# 提取Embeddings模型:Torch
./openface_nn4.small2.v1.t7

# 加载方式
embedder = cv2.dnn.readNetFromTorch(embedding_model)

完整代码:

# USAGE
# python extract_embeddings.py --dataset dataset --embeddings output/embeddings.pickle \
#    --detector face_detection_model --embedding-model openface_nn4.small2.v1.t7

# import the necessary packages
from imutils import paths
import numpy as np
import argparse
import imutils
import pickle
import cv2
import os
import pdb

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--dataset", required=True,
    help="path to input directory of faces + images")
ap.add_argument("-e", "--embeddings", required=True,
    help="path to output serialized db of facial embeddings")
ap.add_argument("-d", "--detector", required=True,
    help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
    help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
    "res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# grab the paths to the input images in our dataset
print("[INFO] quantifying faces...")
imagePaths = list(paths.list_images(args["dataset"]))

# initialize our lists of extracted facial embeddings and
# corresponding people names
knownEmbeddings = []
knownNames = []

# initialize the total number of faces processed
total = 0

# loop over the image paths
for (i, imagePath) in enumerate(imagePaths):
    # extract the person name from the image path
    print("[INFO] processing image {}/{}".format(i + 1,
        len(imagePaths)))
    name = imagePath.split(os.path.sep)[-2]

    # load the image, resize it to have a width of 600 pixels (while
    # maintaining the aspect ratio), and then grab the image
    # dimensions
    image = cv2.imread(imagePath)
    image = imutils.resize(image, width=600)
    (h, w) = image.shape[:2]

    # construct a blob from the image
    imageBlob = cv2.dnn.blobFromImage(
        cv2.resize(image, (300, 300)), 1.0, (300, 300),
        (104.0, 177.0, 123.0), swapRB=False, crop=False)


    # apply OpenCV's deep learning-based face detector to localize
    # faces in the input image
    detector.setInput(imageBlob)
    detections = detector.forward()
    pdb.set_trace()

    # ensure at least one face was found
    if len(detections) > 0:
        # we're making the assumption that each image has only ONE
        # face, so find the bounding box with the largest probability
        i = np.argmax(detections[0, 0, :, 2])
        confidence = detections[0, 0, i, 2]

        # ensure that the detection with the largest probability also
        # means our minimum probability test (thus helping filter out
        # weak detections)
        if confidence > args["confidence"]:
            # compute the (x, y)-coordinates of the bounding box for
            # the face
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # extract the face ROI and grab the ROI dimensions
            face = image[startY:endY, startX:endX]
            (fH, fW) = face.shape[:2]

            # ensure the face width and height are sufficiently large
            if fW < 20 or fH < 20:
                continue

            # construct a blob for the face ROI, then pass the blob
            # through our face embedding model to obtain the 128-d
            # quantification of the face
            faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
                (96, 96), (0, 0, 0), swapRB=True, crop=False)
            embedder.setInput(faceBlob)
            vec = embedder.forward()

            # add the name of the person + corresponding face
            # embedding to their respective lists
            knownNames.append(name)
            knownEmbeddings.append(vec.flatten())
            total += 1

# dump the facial embeddings + names to disk
print("[INFO] serializing {} encodings...".format(total))
data = {"embeddings": knownEmbeddings, "names": knownNames}
f = open(args["embeddings"], "wb")
f.write(pickle.dumps(data))
f.close()

2. Train a Face Recognition Model

  这一步是训练一个SVM分类器,实现人脸识别;使用的训练数据就是上一步中得到的Embeddings和labels;

# USAGE
# python train_model.py --embeddings output/embeddings.pickle \
#    --recognizer output/recognizer.pickle --le output/le.pickle

# import the necessary packages
from sklearn.preprocessing import LabelEncoder
from sklearn.svm import SVC
import argparse
import pickle
import pdb
import numpy as np

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-e", "--embeddings", required=True,
    help="path to serialized db of facial embeddings")
ap.add_argument("-r", "--recognizer", required=True,
    help="path to output model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
    help="path to output label encoder")
args = vars(ap.parse_args())

# load the face embeddings
print("[INFO] loading face embeddings...")
data = pickle.loads(open(args["embeddings"], "rb").read())

# encode the labels
print("[INFO] encoding labels...")
le = LabelEncoder()
labels = le.fit_transform(data["names"])
pdb.set_trace()


# train the model used to accept the 128-d embeddings of the face and
# then produce the actual face recognition
print("[INFO] training model...")
recognizer = SVC(C=1.0, kernel="linear", probability=True)
recognizer.fit(data["embeddings"], labels)

# write the actual face recognition model to disk
f = open(args["recognizer"], "wb")
f.write(pickle.dumps(recognizer))
f.close()

# write the label encoder to disk
f = open(args["le"], "wb")
f.write(pickle.dumps(le))
f.close()

3. Recognize Face via Image

  测试步骤,对单张图片进行人脸识别;需要利用人脸检测模型、提取人脸Embeddings模型、SVM分类模型

# USAGE
# python recognize.py --detector face_detection_model \
#    --embedding-model openface_nn4.small2.v1.t7 \
#    --recognizer output/recognizer.pickle \
#    --le output/le.pickle --image images/adrian.jpg

# import the necessary packages
import numpy as np
import argparse
import imutils
import pickle
import cv2
import os
import pdb

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", required=True,
    help="path to input image")
ap.add_argument("-d", "--detector", required=True,
    help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
    help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-r", "--recognizer", required=True,
    help="path to model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
    help="path to label encoder")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
    "res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

# load the image, resize it to have a width of 600 pixels (while
# maintaining the aspect ratio), and then grab the image dimensions
image = cv2.imread(args["image"])
image = imutils.resize(image, width=600)
(h, w) = image.shape[:2]

# construct a blob from the image
imageBlob = cv2.dnn.blobFromImage(
    cv2.resize(image, (300, 300)), 1.0, (300, 300),
    (104.0, 177.0, 123.0), swapRB=False, crop=False)

# apply OpenCV's deep learning-based face detector to localize
# faces in the input image
detector.setInput(imageBlob)
detections = detector.forward()
pdb.set_trace()

# loop over the detections
for i in range(0, detections.shape[2]):
    # extract the confidence (i.e., probability) associated with the
    # prediction
    confidence = detections[0, 0, i, 2]

    # filter out weak detections
    if confidence > args["confidence"]:
        # compute the (x, y)-coordinates of the bounding box for the
        # face
        box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
        (startX, startY, endX, endY) = box.astype("int")

        # extract the face ROI
        face = image[startY:endY, startX:endX]
        (fH, fW) = face.shape[:2]
        pdb.set_trace()

        # ensure the face width and height are sufficiently large
        if fW < 20 or fH < 20:
            continue

        # construct a blob for the face ROI, then pass the blob
        # through our face embedding model to obtain the 128-d
        # quantification of the face
        faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96),
            (0, 0, 0), swapRB=True, crop=False)
        embedder.setInput(faceBlob)
        vec = embedder.forward()

        # perform classification to recognize the face
        preds = recognizer.predict_proba(vec)[0]
        j = np.argmax(preds)
        proba = preds[j]
        name = le.classes_[j]
        pdb.set_trace()

        # draw the bounding box of the face along with the associated
        # probability
        text = "{}: {:.2f}%".format(name, proba * 100)
        y = startY - 10 if startY - 10 > 10 else startY + 10
        cv2.rectangle(image, (startX, startY), (endX, endY),
            (0, 0, 255), 2)
        cv2.putText(image, text, (startX, y),
            cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2)

# show the output image
cv2.imshow("Image", image)
cv2.waitKey(0)

4. Recognize Face via Video

  对视频流进行人脸识别,类似于单张图片识别;同样需要:人脸检测模型、提取Embeddings模型、SVM分类模型

# USAGE
# python recognize_video.py --detector face_detection_model \
#    --embedding-model openface_nn4.small2.v1.t7 \
#    --recognizer output/recognizer.pickle \
#    --le output/le.pickle

# import the necessary packages
from imutils.video import VideoStream
from imutils.video import FPS
import numpy as np
import argparse
import imutils
import pickle
import time
import cv2
import os

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-d", "--detector", required=True,
    help="path to OpenCV's deep learning face detector")
ap.add_argument("-m", "--embedding-model", required=True,
    help="path to OpenCV's deep learning face embedding model")
ap.add_argument("-r", "--recognizer", required=True,
    help="path to model trained to recognize faces")
ap.add_argument("-l", "--le", required=True,
    help="path to label encoder")
ap.add_argument("-c", "--confidence", type=float, default=0.5,
    help="minimum probability to filter weak detections")
args = vars(ap.parse_args())

# load our serialized face detector from disk
print("[INFO] loading face detector...")
protoPath = os.path.sep.join([args["detector"], "deploy.prototxt"])
modelPath = os.path.sep.join([args["detector"],
    "res10_300x300_ssd_iter_140000.caffemodel"])
detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath)

# load our serialized face embedding model from disk
print("[INFO] loading face recognizer...")
embedder = cv2.dnn.readNetFromTorch(args["embedding_model"])

# load the actual face recognition model along with the label encoder
recognizer = pickle.loads(open(args["recognizer"], "rb").read())
le = pickle.loads(open(args["le"], "rb").read())

# initialize the video stream, then allow the camera sensor to warm up
print("[INFO] starting video stream...")
vs = VideoStream(src=0).start()
time.sleep(2.0)

# start the FPS throughput estimator
fps = FPS().start()

# loop over frames from the video file stream
while True:
    # grab the frame from the threaded video stream
    frame = vs.read()

    # resize the frame to have a width of 600 pixels (while
    # maintaining the aspect ratio), and then grab the image
    # dimensions
    frame = imutils.resize(frame, width=600)
    (h, w) = frame.shape[:2]

    # construct a blob from the image
    imageBlob = cv2.dnn.blobFromImage(
        cv2.resize(frame, (300, 300)), 1.0, (300, 300),
        (104.0, 177.0, 123.0), swapRB=False, crop=False)

    # apply OpenCV's deep learning-based face detector to localize
    # faces in the input image
    detector.setInput(imageBlob)
    detections = detector.forward()

    # loop over the detections
    for i in range(0, detections.shape[2]):
        # extract the confidence (i.e., probability) associated with
        # the prediction
        confidence = detections[0, 0, i, 2]

        # filter out weak detections
        if confidence > args["confidence"]:
            # compute the (x, y)-coordinates of the bounding box for
            # the face
            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h])
            (startX, startY, endX, endY) = box.astype("int")

            # extract the face ROI
            face = frame[startY:endY, startX:endX]
            (fH, fW) = face.shape[:2]

            # ensure the face width and height are sufficiently large
            if fW < 20 or fH < 20:
                continue

            # construct a blob for the face ROI, then pass the blob
            # through our face embedding model to obtain the 128-d
            # quantification of the face
            faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255,
                (96, 96), (0, 0, 0), swapRB=True, crop=False)
            embedder.setInput(faceBlob)
            vec = embedder.forward()

            # perform classification to recognize the face
            preds = recognizer.predict_proba(vec)[0]
            j = np.argmax(preds)
            proba = preds[j]
            name = le.classes_[j]

            # draw the bounding box of the face along with the
            # associated probability
            text = "{}: {:.2f}%".format(name, proba * 100)
            y = startY - 10 if startY - 10 > 10 else startY + 10
            cv2.rectangle(frame, (startX, startY), (endX, endY),
                (0, 0, 255), 2)
            cv2.putText(frame, text, (startX, y),
                cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2)

    # update the FPS counter
    fps.update()

    # show the output frame
    cv2.imshow("Frame", frame)
    key = cv2.waitKey(1) & 0xFF

    # if the `q` key was pressed, break from the loop
    if key == ord("q"):
        break

# stop the timer and display FPS information
fps.stop()
print("[INFO] elasped time: {:.2f}".format(fps.elapsed()))
print("[INFO] approx. FPS: {:.2f}".format(fps.fps()))

# do a bit of cleanup
cv2.destroyAllWindows()
vs.stop()
点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Java修道之路,问鼎巅峰,我辈代码修仙法力齐天
<center<fontcolor00FF7Fsize5face"黑体"代码尽头谁为峰,一见秃头道成空。</font<center<fontcolor00FF00size5face"黑体"编程修真路破折,一步一劫渡飞升。</font众所周知,编程修真有八大境界:1.Javase练气筑基2.数据库结丹3.web前端元婴4.Jav
Stella981 Stella981
3年前
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解
Opencv中Mat矩阵相乘——点乘、dot、mul运算详解2016年09月02日00:00:36 \牧野(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fme.csdn.net%2Fdcrmg) 阅读数:59593
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Google地球出现“无法连接到登录服务器(错误代码:c00a0194)”解决方法
Google地球出现“无法连接到登录服务器(错误代码:c00a0194)”解决方法参考文章:(1)Google地球出现“无法连接到登录服务器(错误代码:c00a0194)”解决方法(https://www.oschina.net/action/GoToLink?urlhttps%3A%2F%2Fwww.codeprj.com%2Fblo
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这