Hbase表两种数据备份方法

Stella981
• 阅读 1193

Hbase表两种数据备份方法-导入和导出示例

本文将提供两种备份方法 ——

1) 基于Hbase提供的类对hbase中某张表进行备份

2) 基于Hbase snapshot数据快速备份方法

场合:由于线上和测试环境是分离的,无法在测试环境访问线上库,所以需要将线上的hbase表导出一部分到测试环境中的hbase表,这就是本文的由来。

一、基于hbase提供的类对hbase中某张表进行备份

本文使用hbase提供的类把hbase中某张表的数据导出hdfs,之后再导出到测试hbase表中。

首先介绍一下相关参数选项:

(1) 从hbase表导出(# 默认不写file://的时候就是导出到hdfs上了 )

HBase数据导出到HDFS或者本地文件
hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak
HBase数据导出到本地文件
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak

(2) 导入hbase表(# 默认不写file://的时候就是导出到hdfs上了 )

将hdfs上的数据导入到备份目标表中
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*
将本地文件上的数据导入到备份目标表中
hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak file:///Users/a6/Applications/experiment_data/hbase_data/bak/*

**(3) 导出时可以限制scanner.batch的大小
**如果在hbase中的一个row出现大量的数据,那么导出时会报出ScannerTimeoutException的错误。这时候需要设置hbase.export.scaaner.batch 这个参数。这样导出时的错误就可以避免了。

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000  emp file:///Users/a6/Applications/experiment_data/hbase_data/bak

(4)为了节省空间可以使用compress选项

hbase的数据导出的时候,如果不适用compress的选项,数据量的大小可能相差5倍。因此使用compress的选项,备份数据的时候是可以节省不少空间的。

并且本人测试了compress选项的导出速度,和无此选项时差别不大(几乎无差别):

hbase org.apache.hadoop.hbase.mapreduce.Export -Dhbase.export.scanner.batch=2000 -D mapred.output.compress=true  emp file:///Users/a6/Applications/experiment_data/hbase_data/bak       

通过添加compress选项,最终导出文件的大小由335字节变成了325字节,
File Output Format Counters                             File Output Format Counters
Bytes Written=335                                Bytes Written=323     

(5)导出指定行键范围和列族

在公司准备要更换数据中心,需要将hbase数据库中的数据进行迁移。虽然进行hbase数据库数据迁移时,使用其自带的工具import和export是很方便的。只不过,在迁移大量数据时,可能需要运行很长的时间,甚至可能出错。这时,是可以通过指定行键范围和列族,来减少单次export工具的运行时间。可以看出,支持的选项有好几个。假如,我们想导出表test的数据,且只要列族Info,行键范围在000到001之间,可以这样写:

这样就可以了,且数据将会保存在hdfs中。

通过指定列族和行键范围,可以只导出部分数据,避免export启动的mapreduce任务运行时间过长。也就是可以分多次导出数据。

./hbase org.apache.hadoop.hbase.mapreduce.Export -D hbase.mapreduce.scan.column.family=Info -D hbase.mapreduce.scan.row.start=000 -D hbase.mapreduce.scan.row.stop=001 test /test_datas

闲话少叙,例子就来:

查到了HBase自带的export/import机制可以实现Backup Restore功能。而且可以实现增量备份。
原理都是用了MapReduce来实现的。
1、Export是以表为单位导出数据的,若想完成整库的备份需要执行n遍。
2、Export在shell中的调用方式类似如下格式:
./hbase org.apache.hadoop.hbase.mapreduce.Export 表名 备份路径 (版本号) (起始时间戳) (结束时间戳)
括号内为可选项,例如
Usage: Export [-D <property=value>]* [ [ []] [^[regex pattern] or [Prefix] to filter]]
hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak 1 123456789
备份 emp 这张表到 /hbase/emp_bak 目录下(最后一级目录必须由Export自己创建),版本号为1,备份记录从123456789这个时间戳开始到当前时间内所有的执行过put操作的记录。
注意:为什么是所有put操作记录?因为在备份时是扫描所有表中所有时间戳大于等于123456789这个值的记录并导出。如果是delete操作,则表中这条记录已经删除,扫描时也无法获取这条记录信息
当不指定时间戳时,备份的就是当前完整表中的数据。

1)、创建hbase表emp

localhost:bin a6$ pwd
/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase shell
create 'emp','personal data','professional data'

2)、插入数据并查看数据

将第一行的值插入到emp表如下所示。
hbase(main):005:0> put 'emp','1','personal data:name','raju'
0 row(s) in 0.6600 seconds
hbase(main):006:0> put 'emp','1','personal data:city','hyderabad'
0 row(s) in 0.0410 seconds
hbase(main):007:0> put 'emp','1','professional data:designation','manager'
0 row(s) in 0.0240 seconds
hbase(main):007:0> put 'emp','1','professional data:salary','50000'
0 row(s) in 0.0240 seconds

插入完成整个表格,会得到下面的输出。
hbase(main):002:0> scan 'emp'
ROW                                                                   COLUMN+CELL
 1                                                                    column=personal data:city, timestamp=1526269334560, value=hyderabad
 1                                                                    column=personal data:name, timestamp=1526269326929, value=raju
 1                                                                    column=professional data:designation, timestamp=1526269345044, value=manager
 1                                                                    column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.2230 seconds

3)、将hbase表emp的数据导出到hdfs的路径/hbase/emp_bak上面

localhost:bin a6$ pwd
/Users/a6/Applications/hbase-1.2.6/bin
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp /hbase/emp_bak
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:31:18,340 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:31:18,412 INFO  [main] mapreduce.Export: versions=1, starttime=0, endtime=9223372036854775807, keepDeletedCells=false
2018-05-15 17:31:19,224 INFO  [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:31:23,325 INFO  [main] zookeeper.RecoverableZooKeeper: Process identifier=hconnection-0x5ed731d0 connecting to ZooKeeper ensemble=localhost:2182
2018-05-15 17:31:23,332 INFO  [main] zookeeper.ZooKeeper: Client environment:zookeeper.version=3.4.6-1569965, built on 02/20/2014 09:09 GMT
2018-05-15 17:31:23,333 INFO  [main] zookeeper.ZooKeeper: Client environment:host.name=localhost
2018-05-15 17:31:23,333 INFO  [main] zookeeper.ZooKeeper: Client environment:java.version=1.8.0_131
2018-05-15 17:31:23,333 INFO  [main] zookeeper.ZooKeeper: Client environment:java.vendor=Oracle Corporation
2018-05-15 17:31:23,333 INFO  [main] zookeeper.ZooKeeper: Client environment:java.home=/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/jre
2018-05-15 17:31:23,333 INFO  [main] zookeeper.ZooKeeper: Client environment:java.class.path=/Users/a6/Applications/hbase-1.2.6/bin/../conf:/Library/Java/JavaVirtualMachines/jdk1.8.0_131.jdk/Contents/Home/lib/tools.jar:/Users/a6/Applications/hbase-1.2.6/bin/..:/Users/a6/Applications/hbase-1.2.6/bin/../lib/activation-1.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/aopalliance-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/apacheds-kerberos-codec-2.0.0-M15.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/asm-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/avro-1.7.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-beanutils-1.7.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-cli-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-codec-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-configuration-1.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-digester-1.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-el-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-io-2.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-lang-2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-logging-1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-math-2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/commons-net-3.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/disruptor-3.3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/findbugs-annotations-1.3.9-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guava-12.0.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guice-3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/guice-servlet-3.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-annotations-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-auth-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-hdfs-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-app-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-core-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-jobclient-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-mapreduce-client-shuffle-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-api-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-client-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hadoop-yarn-server-common-2.5.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-annotations-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-annotations-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-client-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-common-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-examples-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-external-blockcache-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-hadoop-compat-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-hadoop2-compat-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-it-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-it-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-prefix-tree-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-procedure-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-protocol-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-resource-bundle-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-rest-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6-tests.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-server-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-shell-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/hbase-thrift-1.2.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/htrace-core-3.1.0-incubating.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/httpclient-4.2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/httpcore-4.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jamon-runtime-2.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/javax.inject-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jcodings-1.0.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-client-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-core-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-guice-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-json-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jersey-server-1.9.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jets3t-0.9.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jettison-1.3.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-sslengine-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/joni-2.1.2.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jruby-complete-1.6.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsch-0.1.42.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsp-2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/jsp-api-2.1-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/junit-4.12.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/libthrift-0.9.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/log4j-1.2.17.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/metrics-core-2.2.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/netty-all-4.0.23.Final.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/paranamer-2.3.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/servlet-api-2.5-6.1.14.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/servlet-api-2.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/slf4j-api-1.7.7.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/slf4j-log4j12-1.7.5.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/spymemcached-2.11.6.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xmlenc-0.52.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/xz-1.0.jar:/Users/a6/Applications/hbase-1.2.6/bin/../lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/etc/hadoop:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-recipes-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-configuration-1.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-beanutils-1.7.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-i18n-2.0.0-M15.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/httpclient-4.2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/mockito-all-1.8.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jasper-compiler-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-api-1.7.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-json-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/avro-1.7.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-digester-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hadoop-annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hadoop-auth-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/htrace-core-3.0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-framework-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-beanutils-core-1.8.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/java-xmlbuilder-0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/curator-client-2.6.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jettison-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/api-asn1-api-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/apacheds-kerberos-codec-2.0.0-M15.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/api-util-1.0.0-M20.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-net-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/gson-2.2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jets3t-0.9.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jsch-0.1.42.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/commons-math3-3.1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/httpcore-4.2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-nfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/hadoop-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xercesImpl-2.9.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jasper-runtime-5.5.23.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xml-apis-1.3.04.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/xmlenc-0.52.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/htrace-core-3.0.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jsp-api-2.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-el-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/lib/commons-daemon-1.0.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/hdfs/hadoop-hdfs-nfs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-impl-2.2.3-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jsr305-1.3.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/activation-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-httpclient-3.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/stax-api-1.0-2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jline-0.9.94.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jaxb-api-2.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-jaxrs-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-logging-1.1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-json-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-cli-1.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/servlet-api-2.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-xc-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-util-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guava-11.0.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-codec-1.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jetty-6.1.26.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/guice-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-client-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/zookeeper-3.4.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-collections-3.2.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jettison-1.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/commons-lang-2.6.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-web-proxy-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-nodemanager-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-resourcemanager-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-client-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-registry-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-distributedshell-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-applicationhistoryservice-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-applications-unmanaged-am-launcher-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-server-tests-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/yarn/hadoop-yarn-api-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/aopalliance-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/guice-servlet-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/xz-1.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/junit-4.11.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/avro-1.7.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/log4j-1.2.17.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hadoop-annotations-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/protobuf-java-2.5.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/commons-compress-1.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/commons-io-2.4.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-core-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-core-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/netty-3.6.2.Final.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-server-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/guice-3.0.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jersey-guice-1.9.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/paranamer-2.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/asm-3.2.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/hamcrest-core-1.3.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/leveldbjni-all-1.8.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/snappy-java-1.0.4.1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/jackson-mapper-asl-1.9.13.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/lib/javax.inject-1.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-common-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-shuffle-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-app-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.5-tests.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-plugins-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-hs-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/mapreduce/hadoop-mapreduce-client-core-2.6.5.jar:/Users/a6/Applications/hadoop-2.6.5/contrib/capacity-scheduler/*.jar
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:java.library.path=/Users/a6/Applications/hadoop-2.6.5/lib/native
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:java.io.tmpdir=/var/folders/bm/dccwv2v97y75hdshqnh1bbpr0000gn/T/
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:java.compiler=<NA>
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:os.name=Mac OS X
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:os.arch=x86_64
2018-05-15 17:31:23,336 INFO  [main] zookeeper.ZooKeeper: Client environment:os.version=10.13.2
2018-05-15 17:31:23,337 INFO  [main] zookeeper.ZooKeeper: Client environment:user.name=a6
2018-05-15 17:31:23,337 INFO  [main] zookeeper.ZooKeeper: Client environment:user.home=/Users/a6
2018-05-15 17:31:23,337 INFO  [main] zookeeper.ZooKeeper: Client environment:user.dir=/Users/a6/Applications/hbase-1.2.6/bin
2018-05-15 17:31:23,338 INFO  [main] zookeeper.ZooKeeper: Initiating client connection, connectString=localhost:2182 sessionTimeout=90000 watcher=hconnection-0x5ed731d00x0, quorum=localhost:2182, baseZNode=/hbase
2018-05-15 17:31:23,360 INFO  [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Opening socket connection to server localhost/127.0.0.1:2182. Will not attempt to authenticate using SASL (unknown error)
2018-05-15 17:31:23,361 INFO  [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Socket connection established to localhost/127.0.0.1:2182, initiating session
2018-05-15 17:31:23,371 INFO  [main-SendThread(localhost:2182)] zookeeper.ClientCnxn: Session establishment complete on server localhost/127.0.0.1:2182, sessionid = 0x163615ea3e6000c, negotiated timeout = 40000
2018-05-15 17:31:23,455 INFO  [main] util.RegionSizeCalculator: Calculating region sizes for table "emp".
2018-05-15 17:31:23,834 INFO  [main] client.ConnectionManager$HConnectionImplementation: Closing master protocol: MasterService
2018-05-15 17:31:23,834 INFO  [main] client.ConnectionManager$HConnectionImplementation: Closing zookeeper sessionid=0x163615ea3e6000c
2018-05-15 17:31:23,837 INFO  [main] zookeeper.ZooKeeper: Session: 0x163615ea3e6000c closed
2018-05-15 17:31:23,837 INFO  [main-EventThread] zookeeper.ClientCnxn: EventThread shut down
2018-05-15 17:31:23,933 INFO  [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:31:23,955 INFO  [main] Configuration.deprecation: io.bytes.per.checksum is deprecated. Instead, use dfs.bytes-per-checksum
2018-05-15 17:31:24,115 INFO  [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0003
2018-05-15 17:31:24,513 INFO  [main] impl.YarnClientImpl: Submitted application application_1526346976211_0003
2018-05-15 17:31:24,561 INFO  [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0003/
2018-05-15 17:31:24,562 INFO  [main] mapreduce.Job: Running job: job_1526346976211_0003
2018-05-15 17:31:36,842 INFO  [main] mapreduce.Job: Job job_1526346976211_0003 running in uber mode : false
2018-05-15 17:31:36,844 INFO  [main] mapreduce.Job:  map 0% reduce 0%
2018-05-15 17:31:43,965 INFO  [main] mapreduce.Job:  map 100% reduce 0%
2018-05-15 17:31:44,980 INFO  [main] mapreduce.Job: Job job_1526346976211_0003 completed successfully
2018-05-15 17:31:45,120 INFO  [main] mapreduce.Job: Counters: 43
    File System Counters
        FILE: Number of bytes read=0
        FILE: Number of bytes written=139577
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=64
        HDFS: Number of bytes written=323
        HDFS: Number of read operations=4
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=2
    Job Counters
        Launched map tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=4842
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=4842
        Total vcore-seconds taken by all map tasks=4842
        Total megabyte-seconds taken by all map tasks=4958208
    Map-Reduce Framework
        Map input records=1
        Map output records=1
        Input split bytes=64
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=73
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=111149056
    HBase Counters
        BYTES_IN_REMOTE_RESULTS=0
        BYTES_IN_RESULTS=210
        MILLIS_BETWEEN_NEXTS=517
        NOT_SERVING_REGION_EXCEPTION=0
        NUM_SCANNER_RESTARTS=0
        NUM_SCAN_RESULTS_STALE=0
        REGIONS_SCANNED=1
        REMOTE_RPC_CALLS=0
        REMOTE_RPC_RETRIES=0
        ROWS_FILTERED=0
        ROWS_SCANNED=1
        RPC_CALLS=3
        RPC_RETRIES=0
    File Input Format Counters
        Bytes Read=0
    File Output Format Counters
        Bytes Written=323

查看生成的目录并查看导出到hdfs上的二进制数据

localhost:bin a6$ hadoop dfs -ls /hbase/emp_bak
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:29 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
-rw-r--r--   1 a6 supergroup          0 2018-05-15 17:31 /hbase/emp_bak/_SUCCESS
-rw-r--r--   1 a6 supergroup        323 2018-05-15 17:31 /hbase/emp_bak/part-m-00000
localhost:bin a6$ hadoop dfs -cat /hbase/emp_bak/*
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/15 17:34:37 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
SEQ1org.apache.hadoop.hbase.io.ImmutableBytesWritable%org.apache.hadoop.hbase.client.ResultI~
�F�;�H��[$���1�
,
personal datacity ����,(2    hyderabad
'
personal dataname ����,(2raju
5
1professional data
                  designation ����,(2manager
.
1professional datasalary ����,(250000 )

将hbase数据备份到本地文件

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export emp file:///Users/a6/Applications/experiment_data/hbase_data/bak

4)、创建备份到的目标hbase表

create 'emp_bak','personal data','professional data'

5)、将hdfs上的数据导入到备份目标表中

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import emp_bak /hbase/emp_bak/*
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-15 17:37:07,154 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-15 17:37:08,045 INFO  [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-15 17:37:09,852 INFO  [main] input.FileInputFormat: Total input paths to process : 1
2018-05-15 17:37:09,907 INFO  [main] mapreduce.JobSubmitter: number of splits:1
2018-05-15 17:37:10,026 INFO  [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526346976211_0005
2018-05-15 17:37:10,384 INFO  [main] impl.YarnClientImpl: Submitted application application_1526346976211_0005
2018-05-15 17:37:10,413 INFO  [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526346976211_0005/
2018-05-15 17:37:10,413 INFO  [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:18,621 INFO  [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:18,622 INFO  [main] mapreduce.Job:  map 0% reduce 0%
2018-05-15 17:37:25,705 INFO  [main] mapreduce.Job:  map 100% reduce 0%
2018-05-15 17:37:25,716 INFO  [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,832 INFO  [main] mapreduce.Job: Counters: 30
    File System Counters
        FILE: Number of bytes read=0
        FILE: Number of bytes written=139121
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=436
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=3
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=0
    Job Counters
        Launched map tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=4804
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=4804
        Total vcore-seconds taken by all map tasks=4804
        Total megabyte-seconds taken by all map tasks=4919296
    Map-Reduce Framework
        Map input records=1
        Map output records=1
        Input split bytes=113
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=86
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=112197632
    File Input Format Counters
        Bytes Read=323
    File Output Format Counters
        Bytes Written=0
2018-05-15 17:37:25,842 INFO  [main] mapreduce.Job: Running job: job_1526346976211_0005
2018-05-15 17:37:25,848 INFO  [main] mapreduce.Job: Job job_1526346976211_0005 running in uber mode : false
2018-05-15 17:37:25,849 INFO  [main] mapreduce.Job:  map 100% reduce 0%
2018-05-15 17:37:25,855 INFO  [main] mapreduce.Job: Job job_1526346976211_0005 completed successfully
2018-05-15 17:37:25,862 INFO  [main] mapreduce.Job: Counters: 30
    File System Counters
        FILE: Number of bytes read=0
        FILE: Number of bytes written=139121
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=436
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=3
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=0
    Job Counters
        Launched map tasks=1
        Data-local map tasks=1
        Total time spent by all maps in occupied slots (ms)=4804
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=4804
        Total vcore-seconds taken by all map tasks=4804
        Total megabyte-seconds taken by all map tasks=4919296
    Map-Reduce Framework
        Map input records=1
        Map output records=1
        Input split bytes=113
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=86
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=112197632
    File Input Format Counters
        Bytes Read=323
    File Output Format Counters
        Bytes Written=0

这样基本就完成了hbase表中的数据我们可以转化为mapreduce任务进程开始导出导入。当然也可以这么备份的。

6)、最后我们仔细看一下hbase导出和导入的关键命令参数

localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Export
ERROR: Wrong number of arguments: 0
Usage: Export [-D <property=value>]* <tablename> <outputdir> [<versions> [<starttime> [<endtime>]] [^[regex pattern] or [Prefix] to filter]]

  Note: -D properties will be applied to the conf used.
  For example:
   -D mapreduce.output.fileoutputformat.compress=true
   -D mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.GzipCodec
   -D mapreduce.output.fileoutputformat.compress.type=BLOCK
  Additionally, the following SCAN properties can be specified
  to control/limit what is exported..
   -D hbase.mapreduce.scan.column.family=<familyName>
   -D hbase.mapreduce.include.deleted.rows=true
   -D hbase.mapreduce.scan.row.start=<ROWSTART>
   -D hbase.mapreduce.scan.row.stop=<ROWSTOP>
For performance consider the following properties:
   -Dhbase.client.scanner.caching=100
   -Dmapreduce.map.speculative=false
   -Dmapreduce.reduce.speculative=false
For tables with very wide rows consider setting the batch size as below:
   -Dhbase.export.scanner.batch=10
localhost:bin a6$ hbase org.apache.hadoop.hbase.mapreduce.Driver import
ERROR: Wrong number of arguments: 0
Usage: Import [options] <tablename> <inputdir>
By default Import will load data directly into HBase. To instead generate
HFiles of data to prepare for a bulk data load, pass the option:
  -Dimport.bulk.output=/path/for/output
 To apply a generic org.apache.hadoop.hbase.filter.Filter to the input, use
  -Dimport.filter.class=<name of filter class>
  -Dimport.filter.args=<comma separated list of args for filter
 NOTE: The filter will be applied BEFORE doing key renames via the HBASE_IMPORTER_RENAME_CFS property. Futher, filters will only use the Filter#filterRowKey(byte[] buffer, int offset, int length) method to identify  whether the current row needs to be ignored completely for processing and  Filter#filterKeyValue(KeyValue) method to determine if the KeyValue should be added; Filter.ReturnCode#INCLUDE and #INCLUDE_AND_NEXT_COL will be considered as including the KeyValue.
To import data exported from HBase 0.94, use
  -Dhbase.import.version=0.94
For performance consider the following options:
  -Dmapreduce.map.speculative=false
  -Dmapreduce.reduce.speculative=false
  -Dimport.wal.durability=<Used while writing data to hbase. Allowed values are the supported durability values like SKIP_WAL/ASYNC_WAL/SYNC_WAL/...>

二、基于Hbase snapshot数据快速备份方法

1.Snapshot备份的优点是什么?

HBase以往数据的备份基于distcp或者copyTable等工具,这些备份机制或多或少对当前的online数据读写存在一定的影响,Snapshot提供了一种快速的数据备份方式,无需进行数据copy。
参见下图
Hbase表两种数据备份方法
2.HBase数据的备份的方式有几种?Snapshot包括在线和离线的,他们之间有什么区别?

Snapshot包括在线和离线的
(1)离线方式是disabletable,由HBase Master遍历HDFS中的table metadata和hfiles,建立对他们的引用。
(2)在线方式是enabletable,由Master指示region server进行snapshot操作,在此过程中,master和regionserver之间类似两阶段commit的snapshot操作。
Hbase表两种数据备份方法

HFile是不可变的,只能append和delete, region的split和compact,都不会对snapshot引用的文件做删除(除非删除snapshot文件),这些文件会归档到archive目录下,进而需要重新调整snapshot文件中相关hfile的引用位置关系。

Hbase表两种数据备份方法
基于snapshot文件,可以做clone一个新表,restore,export到另外一个集群中操作;其中clone生成的新表只是增加元数据,相关的数据文件还是复用snapshot指定的数据文件
参见clone新表操作示意图:

Hbase表两种数据备份方法

**3.snashot的shell的命令都由哪些?如何删除、查看快照?如何导出到另外一个集群?
**

snashot相关的操作命令如下:

1)创建快照(查看快照->查看快照snapshot命令相关参数->创建快照—>查看快照)

hbase(main):002:0> list_snapshots
SNAPSHOT                                                              TABLE + CREATION TIME
0 row(s) in 0.0290 seconds

=> []
hbase(main):003:0> snapshot

ERROR: wrong number of arguments (0 for 2)

Here is some help for this command:
Take a snapshot of specified table. Examples:

  hbase> snapshot 'sourceTable', 'snapshotName'
  hbase> snapshot 'namespace:sourceTable', 'snapshotName', {SKIP_FLUSH => true}


hbase(main):004:0> snapshot 'emp','emp_snapshot'
0 row(s) in 0.3730 seconds

hbase(main):005:0> list_snapshots
SNAPSHOT                                                              TABLE + CREATION TIME
 emp_snapshot                                                         emp (Wed May 16 09:44:53 +0800 2018)
1 row(s) in 0.0190 seconds

=> ["emp_snapshot"]

2)删除并查看快照

hbase(main):006:0> delete_snapshot 'emp_snapshot'
0 row(s) in 0.0390 seconds

hbase(main):007:0> list_snapshots
SNAPSHOT                                                              TABLE + CREATION TIME
0 row(s) in 0.0040 seconds

=> []

3)基于快照,clone一个新表

hbase(main):011:0> clone_snapshot 'emp_snapshot','new_emp'
0 row(s) in 0.5290 seconds

hbase(main):013:0> scan 'new_emp'
ROW                                                                   COLUMN+CELL
 1                                                                    column=personal data:city, timestamp=1526269334560, value=hyderabad
 1                                                                    column=personal data:name, timestamp=1526269326929, value=raju
 1                                                                    column=professional data:designation, timestamp=1526269345044, value=manager
 1                                                                    column=professional data:salary, timestamp=1526269352605, value=50000
1 row(s) in 0.1050 seconds

hbase(main):014:0> desc 'new_emp'
Table new_emp is ENABLED
new_emp
COLUMN FAMILIES DESCRIPTION
{NAME => 'personal data', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_SCOPE
 => '0'}
{NAME => 'professional data', BLOOMFILTER => 'ROW', VERSIONS => '1', IN_MEMORY => 'false', KEEP_DELETED_CELLS => 'FALSE', DATA_BLOCK_ENCODING => 'NONE', TTL => 'FOREVER', COMPRESSION => 'NONE', MIN_VERSIONS => '0', BLOCKCACHE => 'true', BLOCKSIZE => '65536', REPLICATION_S
COPE => '0'}
2 row(s) in 0.0370 seconds

4)基于快照恢复表(原hbase表emp需要删除)

hbase(main):027:0>gt; list
TABLE
new_emp
t1
test
3 row(s) in 0.0130 seconds

=> ["new_emp", "t1", "test"]
hbase(main):028:0> list_snapshots
SNAPSHOT                                                              TABLE + CREATION TIME
 emp_snapshot                                                         emp (Wed May 16 09:45:25 +0800 2018)
1 row(s) in 0.0130 seconds

=> ["emp_snapshot"]
hbase(main):029:0> restore_snapshot 'emp_snapshot'
0 row(s) in 0.3700 seconds

hbase(main):030:0> list
TABLE
emp
new_emp
t1
test
4 row(s) in 0.0240 seconds

=> ["emp", "new_emp", "t1", "test"]

5)基于快照将数据导出到另外一个集群中的本地文件中

利用mapreduce job将emp_snapshot这个snapshot 导出到本地目录/Users/a6/Applications/experiment_data/hbase_data中的bak_emp_snapshot(不存在)

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot 'emp_snapshot' -copy-to file:///Users/a6/Applications/experiment_data/hbase_data/bak_emp_snapshot -mappers 16
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:21:47,310 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:21:47,633 INFO  [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:21:47,922 INFO  [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:21:50,233 INFO  [main] snapshot.ExportSnapshot: Loading Snapshot 'emp_snapshot' hfile list
2018-05-16 10:21:50,547 INFO  [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:21:50,732 INFO  [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0001
2018-05-16 10:21:51,182 INFO  [main] impl.YarnClientImpl: Submitted application application_1526434993990_0001
2018-05-16 10:21:51,268 INFO  [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0001/
2018-05-16 10:21:51,269 INFO  [main] mapreduce.Job: Running job: job_1526434993990_0001
2018-05-16 10:22:02,425 INFO  [main] mapreduce.Job: Job job_1526434993990_0001 running in uber mode : false
2018-05-16 10:22:02,427 INFO  [main] mapreduce.Job:  map 0% reduce 0%
2018-05-16 10:22:09,722 INFO  [main] mapreduce.Job:  map 50% reduce 0%
2018-05-16 10:22:10,731 INFO  [main] mapreduce.Job:  map 100% reduce 0%
2018-05-16 10:22:10,740 INFO  [main] mapreduce.Job: Job job_1526434993990_0001 completed successfully
2018-05-16 10:22:10,848 INFO  [main] mapreduce.Job: Counters: 37
    File System Counters
        FILE: Number of bytes read=9985
        FILE: Number of bytes written=291407
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=408
        HDFS: Number of bytes written=0
        HDFS: Number of read operations=2
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=0
    Job Counters
        Launched map tasks=2
        Other local map tasks=2
        Total time spent by all maps in occupied slots (ms)=9683
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=9683
        Total vcore-seconds taken by all map tasks=9683
        Total megabyte-seconds taken by all map tasks=9915392
    Map-Reduce Framework
        Map input records=2
        Map output records=0
        Input split bytes=408
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=155
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=212860928
    org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
        BYTES_COPIED=9985
        BYTES_EXPECTED=9985
        BYTES_SKIPPED=0
        COPY_FAILED=0
        FILES_COPIED=2
        FILES_SKIPPED=0
        MISSING_FILES=0
    File Input Format Counters
        Bytes Read=0
    File Output Format Counters
        Bytes Written=0
2018-05-16 10:22:10,851 INFO  [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:22:10,852 INFO  [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:22:10,875 INFO  [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

查看快照备份到本地的备份文件结构:

localhost:hbase_data a6$ ls  -R
bak_emp_snapshot

./bak_emp_snapshot:
archive

./bak_emp_snapshot/archive:
data

./bak_emp_snapshot/archive/data:
default

./bak_emp_snapshot/archive/data/default:
emp

./bak_emp_snapshot/archive/data/default/emp:
f8d3b4ead1603d0e9350dc426fce7fd7

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7:
personal data        professional data

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data:
9111be6b05e746ddb8507e8daf5a4eb0

./bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data:
c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

6)基于快照将数据导出到另外一个集群中的hdfs上

localhost:bin a6$ hbase org.apache.hadoop.hbase.snapshot.ExportSnapshot -snapshot 'emp_snapshot' -copy-to hdfs:///hbase/bak_emp_snapshot -mappers 16
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hbase-1.2.6/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/Users/a6/Applications/hadoop-2.6.5/share/hadoop/common/lib/slf4j-log4j12-1.7.5.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
2018-05-16 10:29:02,343 WARN  [main] util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
2018-05-16 10:29:03,034 INFO  [main] snapshot.ExportSnapshot: Copy Snapshot Manifest
2018-05-16 10:29:03,423 INFO  [main] client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2018-05-16 10:29:04,368 INFO  [main] snapshot.ExportSnapshot: Loading Snapshot 'emp_snapshot' hfile list
2018-05-16 10:29:04,730 INFO  [main] mapreduce.JobSubmitter: number of splits:2
2018-05-16 10:29:04,863 INFO  [main] mapreduce.JobSubmitter: Submitting tokens for job: job_1526434993990_0002
2018-05-16 10:29:05,129 INFO  [main] impl.YarnClientImpl: Submitted application application_1526434993990_0002
2018-05-16 10:29:05,160 INFO  [main] mapreduce.Job: The url to track the job: http://localhost:8088/proxy/application_1526434993990_0002/
2018-05-16 10:29:05,160 INFO  [main] mapreduce.Job: Running job: job_1526434993990_0002
2018-05-16 10:29:13,260 INFO  [main] mapreduce.Job: Job job_1526434993990_0002 running in uber mode : false
2018-05-16 10:29:13,262 INFO  [main] mapreduce.Job:  map 0% reduce 0%
2018-05-16 10:29:18,354 INFO  [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000000_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:19,377 INFO  [main] mapreduce.Job: Task Id : attempt_1526434993990_0002_m_000001_0, Status : FAILED
Error: Java heap space
2018-05-16 10:29:25,432 INFO  [main] mapreduce.Job:  map 50% reduce 0%
2018-05-16 10:29:26,438 INFO  [main] mapreduce.Job:  map 100% reduce 0%
2018-05-16 10:29:26,450 INFO  [main] mapreduce.Job: Job job_1526434993990_0002 completed successfully
2018-05-16 10:29:26,554 INFO  [main] mapreduce.Job: Counters: 38
    File System Counters
        FILE: Number of bytes read=9985
        FILE: Number of bytes written=281240
        FILE: Number of read operations=0
        FILE: Number of large read operations=0
        FILE: Number of write operations=0
        HDFS: Number of bytes read=408
        HDFS: Number of bytes written=9985
        HDFS: Number of read operations=8
        HDFS: Number of large read operations=0
        HDFS: Number of write operations=8
    Job Counters
        Failed map tasks=2
        Launched map tasks=4
        Other local map tasks=4
        Total time spent by all maps in occupied slots (ms)=17871
        Total time spent by all reduces in occupied slots (ms)=0
        Total time spent by all map tasks (ms)=17871
        Total vcore-seconds taken by all map tasks=17871
        Total megabyte-seconds taken by all map tasks=18299904
    Map-Reduce Framework
        Map input records=2
        Map output records=0
        Input split bytes=408
        Spilled Records=0
        Failed Shuffles=0
        Merged Map outputs=0
        GC time elapsed (ms)=235
        CPU time spent (ms)=0
        Physical memory (bytes) snapshot=0
        Virtual memory (bytes) snapshot=0
        Total committed heap usage (bytes)=257949696
    org.apache.hadoop.hbase.snapshot.ExportSnapshot$Counter
        BYTES_COPIED=9985
        BYTES_EXPECTED=9985
        BYTES_SKIPPED=0
        COPY_FAILED=0
        FILES_COPIED=2
        FILES_SKIPPED=0
        MISSING_FILES=0
    File Input Format Counters
        Bytes Read=0
    File Output Format Counters
        Bytes Written=0
2018-05-16 10:29:26,556 INFO  [main] snapshot.ExportSnapshot: Finalize the Snapshot Export
2018-05-16 10:29:26,563 INFO  [main] snapshot.ExportSnapshot: Verify snapshot integrity
2018-05-16 10:29:26,647 INFO  [main] snapshot.ExportSnapshot: Export Completed: emp_snapshot

**检验并查看hdfs文件:
**

localhost:hbase_data a6$ hadoop dfs -ls /hbase/
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:34 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot
drwxr-xr-x   - a6 supergroup          0 2018-05-15 17:31 /hbase/emp_bak
localhost:hbase_data a6$ hadoop dfs -ls /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:29:45 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
Found 2 items
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
localhost:hbase_data a6$

查看生成快照文件的目录结构及其文件大小

localhost:hbase_data a6$ hadoop dfs -ls -R  /hbase/bak_emp_snapshot
DEPRECATED: Use of this script to execute hdfs command is deprecated.
Instead use the hdfs command for it.

18/05/16 10:34:15 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/.tmp
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot
-rw-r--r--   1 a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.inprogress
-rw-r--r--   1 a6 supergroup         30 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/.snapshotinfo
-rw-r--r--   1 a6 supergroup        703 2018-05-16 10:29 /hbase/bak_emp_snapshot/.hbase-snapshot/emp_snapshot/data.manifest
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data
-rw-rw-rw-   1 a6 staff            4976 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/personal data/9111be6b05e746ddb8507e8daf5a4eb0
drwxr-xr-x   - a6 supergroup          0 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data
-rw-rw-rw-   1 a6 staff            5009 2018-05-16 10:29 /hbase/bak_emp_snapshot/archive/data/default/emp/f8d3b4ead1603d0e9350dc426fce7fd7/professional data/c264d32ef37b4b6f9953b388f007d059
localhost:hbase_data a6$

参考网址: https://blog.csdn.net/yangbutao/article/details/12911487

其他备份方法:https://www.cnblogs.com/ios123/p/6399699.html

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
Hive 数据导入HBase的2种方法详解
最近经常被问到这个问题,所以简单写一下总结。Hive数据导入到HBase基本有2个方案:  1、HBase中建表,然后Hive中建一个外部表,这样当Hive中写入数据后,HBase中也会同时更新  2、MapReduce读取Hive数据,然后写入(API或者Bulkload)到HBase1、Hive外部表创
Wesley13 Wesley13
3年前
MySQL数据的导出、导入(mysql内部命令:mysqldump、mysql)
备份数据库1.导出某个数据库(数据、表结构、函数、存储过程全部备份)mysqldumpBR数据库名urootp密码defaultcharactersetutf8xxx.sql2.导出某个数据库特定表和数据 (数据和表结构)mysqldump 数据库名 urootp密码table表名
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
HBase跨集群表复制
概述A集群HBase中有个表testTableCopy,要将其复制到B集群的HBase中。使用HBase表复制工具./hbaseorg.apache.hadoop.hbase.mapreduce.CopyTableroot@host:/tstar/hbase/bin./hbaseorg.apache.hadoop.hba
Stella981 Stella981
3年前
HBase–常用Shell操作篇
HBase为用户提供了一个Shell终端进行交互操作,通过“helpget”命令可以获得帮助信息。【查询相关】1\.进入hbaseshellconsole  $HBASE\_HOME/bin/hbaseshell2\.查看有哪些表  list3\.查看全表数据   scan'tablename'
Stella981 Stella981
3年前
HBase启动失败
如果在hbase的shell中输入了status报错,hbase(main):001:0statusERROR:org.apache.hadoop.hbase.ipc.ServerNotRunningYetException:Serverisnotrunningyetatorg.apache.ha
Stella981 Stella981
3年前
Hbase基础篇
hbase存储:HBase存储数据其底层使用的是HDFS来作为存储介质,HBase的每一张表对应的HDFS目录上的一个文件夹,文件夹名以HBase表进行命名(如果没有使用命名空间,则默认在default目录下),在表文件夹下存放在若干个Region命名的文件夹,Region文件夹中的每个列簇也是用文件夹进行存储的,每个列簇中存储就是实际的数据,以HF
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这