SkyWalking 快速接入实践

Stella981
• 阅读 726

分布式应用,会存在各种问题。而要解决这些难题,除了要应用自己做一些监控埋点外,还应该有一些外围的系统进行主动探测,主动发现。

APM工具就是干这活的,SkyWalking 是国人开源的一款优秀的APM应用,已成为apache的顶级项目。

今天我们就来实践下 SkyWalking 下吧。

实践目标: 达到监控现有的几个系统,清楚各调用关系,可以找到出性能问题点。

实践步骤:

  1. SkyWalking 服务端安装运行;

  2. 应用端的接入;

  3. 后台查看效果;

  4. 分析排查问题;

  5. 深入了解(如有心情);

  6. SkyWalking 服务端安装

下载应用包:

# 主下载页
 http://skywalking.apache.org/downloads/
 # 点开具体下载地址后进行下载,如:
 wget http://mirrors.tuna.tsinghua.edu.cn/apache/skywalking/6.5.0/apache-skywalking-apm-6.5.0.tar.gz

解压安装包:

 tar -xzvf apache-skywalking-apm-6.5.0.tar.gz

使用默认配置端口,默认存储方式 h2, 直接启动服务:

  ./bin/startup.sh

好产品就是这么简单!

现在服务端就启起来了,可以打开后台地址查看(默认是8080端口): http://localhost:8080 界面如下:
SkyWalking 快速接入实践

当然,上面是已存在应用的页面。现在你是看不到任何应用的,因为你还没有接入嘛。

  1. 应用端的接入

我们只以java应用接入方式实践。

直接使用 javaagent 进行启动即可:

java -javaagent:/root/skywalking/agent/skywalking-agent.jar -Dskywalking.agent.service_name=app1 -Dskywalking.collector.backend_service=localhost:11800 -jar myapp.jar

参数说明:

# 参数解释
 skywalking.agent.service_name: 本应用在skywalking中的名称
 skywalking.collector.backend_service: skywalking 服务端地址,grpc上报地址,默认端口是 11800 # 上面两个参数也可以使用另外的表现形式 SW_AGENT_COLLECTOR_BACKEND_SERVICES: 与 skywalking.collector.backend_service 含义相同 SW_AGENT_NAME: 与 skywalking.agent.service_name 含义相同

随便访问几个接口或页面,使监控抓取到数据。

再回管理页面,已经看到有节点了。截图如上。

现在我们还可以查看各应用之间的关系了!
SkyWalking 快速接入实践

关系清晰吧!一目了然,代码再复杂也不怕了。

我们还可以追踪具体链路:
SkyWalking 快速接入实践

只要知道问题发生的时间点,即可以很快定位到发生问题的接口、系统,快速解决。

  1. SkyWalking 配置文件

如上,我们并没有改任何配置文件,就让系统跑起来了。幸运的同时,我们应该要知道更多!至少配置得知道。

config/application.yml : 收集器服务端配置

webapp/webapp.yml : 配置 Web 的端口及获取数据的 OAP(Collector)的IP和端口

agent/config/agent.config : 配置 Agent 信息,如 Skywalking OAP(Collector)的地址和名称

下面是 skywalking 的默认配置,我们可以不用更改就能跑起来一个样例!更改以生产化配置!

config/application.yml

cluster:
 standalone:
 # Please check your ZooKeeper is 3.5+, However, it is also compatible with ZooKeeper 3.4.x. Replace the ZooKeeper 3.5+
 # library the oap-libs folder with your ZooKeeper 3.4.x library.
# zookeeper: # nameSpace: ${SW_NAMESPACE:""} # hostPort: ${SW_CLUSTER_ZK_HOST_PORT:localhost:2181} # #Retry Policy # baseSleepTimeMs: ${SW_CLUSTER_ZK_SLEEP_TIME:1000} # initial amount of time to wait between retries # maxRetries: ${SW_CLUSTER_ZK_MAX_RETRIES:3} # max number of times to retry # # Enable ACL # enableACL: ${SW_ZK_ENABLE_ACL:false} # disable ACL in default # schema: ${SW_ZK_SCHEMA:digest} # only support digest schema # expression: ${SW_ZK_EXPRESSION:skywalking:skywalking} # kubernetes: # watchTimeoutSeconds: ${SW_CLUSTER_K8S_WATCH_TIMEOUT:60} # namespace: ${SW_CLUSTER_K8S_NAMESPACE:default} # labelSelector: ${SW_CLUSTER_K8S_LABEL:app=collector,release=skywalking} # uidEnvName: ${SW_CLUSTER_K8S_UID:SKYWALKING_COLLECTOR_UID} # consul: # serviceName: ${SW_SERVICE_NAME:"SkyWalking_OAP_Cluster"} # Consul cluster nodes, example: 10.0.0.1:8500,10.0.0.2:8500,10.0.0.3:8500 # hostPort: ${SW_CLUSTER_CONSUL_HOST_PORT:localhost:8500} # nacos: # serviceName: ${SW_SERVICE_NAME:"SkyWalking_OAP_Cluster"} # hostPort: ${SW_CLUSTER_NACOS_HOST_PORT:localhost:8848} # # Nacos Configuration namespace # namespace: 'public' # etcd: # serviceName: ${SW_SERVICE_NAME:"SkyWalking_OAP_Cluster"} # etcd cluster nodes, example: 10.0.0.1:2379,10.0.0.2:2379,10.0.0.3:2379 # hostPort: ${SW_CLUSTER_ETCD_HOST_PORT:localhost:2379} core: default:  # Mixed: Receive agent data, Level 1 aggregate, Level 2 aggregate  # Receiver: Receive agent data, Level 1 aggregate  # Aggregator: Level 2 aggregate role: ${SW_CORE_ROLE:Mixed} # Mixed/Receiver/Aggregator restHost: ${SW_CORE_REST_HOST:0.0.0.0} restPort: ${SW_CORE_REST_PORT:12800} restContextPath: ${SW_CORE_REST_CONTEXT_PATH:/} gRPCHost: ${SW_CORE_GRPC_HOST:0.0.0.0} gRPCPort: ${SW_CORE_GRPC_PORT:11800} downsampling: - Hour - Day - Month  # Set a timeout on metrics data. After the timeout has expired, the metrics data will automatically be deleted. enableDataKeeperExecutor: ${SW_CORE_ENABLE_DATA_KEEPER_EXECUTOR:true} # Turn it off then automatically metrics data delete will be close. dataKeeperExecutePeriod: ${SW_CORE_DATA_KEEPER_EXECUTE_PERIOD:5} # How often the data keeper executor runs periodically, unit is minute recordDataTTL: ${SW_CORE_RECORD_DATA_TTL:90} # Unit is minute minuteMetricsDataTTL: ${SW_CORE_MINUTE_METRIC_DATA_TTL:90} # Unit is minute hourMetricsDataTTL: ${SW_CORE_HOUR_METRIC_DATA_TTL:36} # Unit is hour dayMetricsDataTTL: ${SW_CORE_DAY_METRIC_DATA_TTL:45} # Unit is day monthMetricsDataTTL: ${SW_CORE_MONTH_METRIC_DATA_TTL:18} # Unit is month  # Cache metric data for 1 minute to reduce database queries, and if the OAP cluster changes within that minute,  # the metrics may not be accurate within that minute. enableDatabaseSession: ${SW_CORE_ENABLE_DATABASE_SESSION:true} storage: # elasticsearch: # nameSpace: ${SW_NAMESPACE:""} # clusterNodes: ${SW_STORAGE_ES_CLUSTER_NODES:localhost:9200} # protocol: ${SW_STORAGE_ES_HTTP_PROTOCOL:"http"} # trustStorePath: ${SW_SW_STORAGE_ES_SSL_JKS_PATH:"../es_keystore.jks"} # trustStorePass: ${SW_SW_STORAGE_ES_SSL_JKS_PASS:""} # user: ${SW_ES_USER:""} # password: ${SW_ES_PASSWORD:""} # indexShardsNumber: ${SW_STORAGE_ES_INDEX_SHARDS_NUMBER:2} # indexReplicasNumber: ${SW_STORAGE_ES_INDEX_REPLICAS_NUMBER:0} # # Those data TTL settings will override the same settings in core module. # recordDataTTL: ${SW_STORAGE_ES_RECORD_DATA_TTL:7} # Unit is day # otherMetricsDataTTL: ${SW_STORAGE_ES_OTHER_METRIC_DATA_TTL:45} # Unit is day # monthMetricsDataTTL: ${SW_STORAGE_ES_MONTH_METRIC_DATA_TTL:18} # Unit is month # # Batch process setting, refer to https://www.elastic.co/guide/en/elasticsearch/client/java-api/5.5/java-docs-bulk-processor.html # bulkActions: ${SW_STORAGE_ES_BULK_ACTIONS:1000} # Execute the bulk every 1000 requests # flushInterval: ${SW_STORAGE_ES_FLUSH_INTERVAL:10} # flush the bulk every 10 seconds whatever the number of requests # concurrentRequests: ${SW_STORAGE_ES_CONCURRENT_REQUESTS:2} # the number of concurrent requests # resultWindowMaxSize: ${SW_STORAGE_ES_QUERY_MAX_WINDOW_SIZE:10000} # metadataQueryMaxSize: ${SW_STORAGE_ES_QUERY_MAX_SIZE:5000} # segmentQueryMaxSize: ${SW_STORAGE_ES_QUERY_SEGMENT_SIZE:200} h2: driver: ${SW_STORAGE_H2_DRIVER:org.h2.jdbcx.JdbcDataSource} url: ${SW_STORAGE_H2_URL:jdbc:h2:mem:skywalking-oap-db} user: ${SW_STORAGE_H2_USER:sa} metadataQueryMaxSize: ${SW_STORAGE_H2_QUERY_MAX_SIZE:5000} # mysql: # properties: # jdbcUrl: ${SW_JDBC_URL:"jdbc:mysql://localhost:3306/swtest"} # dataSource.user: ${SW_DATA_SOURCE_USER:root} # dataSource.password: ${SW_DATA_SOURCE_PASSWORD:root@1234} # dataSource.cachePrepStmts: ${SW_DATA_SOURCE_CACHE_PREP_STMTS:true} # dataSource.prepStmtCacheSize: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_SIZE:250} # dataSource.prepStmtCacheSqlLimit: ${SW_DATA_SOURCE_PREP_STMT_CACHE_SQL_LIMIT:2048} # dataSource.useServerPrepStmts: ${SW_DATA_SOURCE_USE_SERVER_PREP_STMTS:true} # metadataQueryMaxSize: ${SW_STORAGE_MYSQL_QUERY_MAX_SIZE:5000} receiver-sharing-server: default: receiver-register: default: receiver-trace: default: bufferPath: ${SW_RECEIVER_BUFFER_PATH:../trace-buffer/} # Path to trace buffer files, suggest to use absolute path bufferOffsetMaxFileSize: ${SW_RECEIVER_BUFFER_OFFSET_MAX_FILE_SIZE:100} # Unit is MB bufferDataMaxFileSize: ${SW_RECEIVER_BUFFER_DATA_MAX_FILE_SIZE:500} # Unit is MB bufferFileCleanWhenRestart: ${SW_RECEIVER_BUFFER_FILE_CLEAN_WHEN_RESTART:false} sampleRate: ${SW_TRACE_SAMPLE_RATE:10000} # The sample rate precision is 1/10000. 10000 means 100% sample in default. slowDBAccessThreshold: ${SW_SLOW_DB_THRESHOLD:default:200,mongodb:100} # The slow database access thresholds. Unit ms. receiver-jvm: default: receiver-clr: default: service-mesh: default: bufferPath: ${SW_SERVICE_MESH_BUFFER_PATH:../mesh-buffer/} # Path to trace buffer files, suggest to use absolute path bufferOffsetMaxFileSize: ${SW_SERVICE_MESH_OFFSET_MAX_FILE_SIZE:100} # Unit is MB bufferDataMaxFileSize: ${SW_SERVICE_MESH_BUFFER_DATA_MAX_FILE_SIZE:500} # Unit is MB bufferFileCleanWhenRestart: ${SW_SERVICE_MESH_BUFFER_FILE_CLEAN_WHEN_RESTART:false} istio-telemetry: default: envoy-metric: default: # alsHTTPAnalysis: ${SW_ENVOY_METRIC_ALS_HTTP_ANALYSIS:k8s-mesh} #receiver_zipkin: # default: # host: ${SW_RECEIVER_ZIPKIN_HOST:0.0.0.0} # port: ${SW_RECEIVER_ZIPKIN_PORT:9411} # contextPath: ${SW_RECEIVER_ZIPKIN_CONTEXT_PATH:/} query: graphql: path: ${SW_QUERY_GRAPHQL_PATH:/graphql} alarm: default: telemetry: none: configuration: none: # apollo: # apolloMeta: http://106.12.25.204:8080 # apolloCluster: default # # apolloEnv: # defaults to null # appId: skywalking # period: 5 # nacos: # # Nacos Server Host # serverAddr: 127.0.0.1 # # Nacos Server Port # port: 8848 # # Nacos Configuration Group # group: 'skywalking' # # Nacos Configuration namespace # namespace: '' # # Unit seconds, sync period. Default fetch every 60 seconds. # period : 60 # # the name of current cluster, set the name if you want to upstream system known. # clusterName: "default" # zookeeper: # period : 60 # Unit seconds, sync period. Default fetch every 60 seconds. # nameSpace: /default # hostPort: localhost:2181 # #Retry Policy # baseSleepTimeMs: 1000 # initial amount of time to wait between retries # maxRetries: 3 # max number of times to retry # etcd: # period : 60 # Unit seconds, sync period. Default fetch every 60 seconds. # group : 'skywalking' # serverAddr: localhost:2379 # clusterName: "default" # consul: # # Consul host and ports, separated by comma, e.g. 1.2.3.4:8500,2.3.4.5:8500 # hostAndPorts: ${consul.address} # # Sync period in seconds. Defaults to 60 seconds. # period: 1  #exporter: # grpc: # targetHost: ${SW_EXPORTER_GRPC_HOST:127.0.0.1} # targetPort: ${SW_EXPORTER_GRPC_PORT:9870}

webapp/webapp.yml

 server:
 port: 8080

collector:
 path: /graphql
 ribbon:
 ReadTimeout: 10000
 # Point to all backend's restHost:restPort, split by ,
 listOfServers: 127.0.0.1:12800

agent/config/agent.config

 # The agent namespace
# agent.namespace=${SW_AGENT_NAMESPACE:default-namespace}  # The service name in UI agent.service_name=${SW_AGENT_NAME:Your_ApplicationName}  # The number of sampled traces per 3 seconds # Negative number means sample traces as many as possible, most likely 100% # agent.sample_n_per_3_secs=${SW_AGENT_SAMPLE:-1}  # Authentication active is based on backend setting, see application.yml for more details. # agent.authentication = ${SW_AGENT_AUTHENTICATION:xxxx}  # The max amount of spans in a single segment. # Through this config item, skywalking keep your application memory cost estimated. # agent.span_limit_per_segment=${SW_AGENT_SPAN_LIMIT:300}  # Ignore the segments if their operation names end with these suffix. # agent.ignore_suffix=${SW_AGENT_IGNORE_SUFFIX:.jpg,.jpeg,.js,.css,.png,.bmp,.gif,.ico,.mp3,.mp4,.html,.svg}  # If true, skywalking agent will save all instrumented classes files in `/debugging` folder. # Skywalking team may ask for these files in order to resolve compatible problem. # agent.is_open_debugging_class = ${SW_AGENT_OPEN_DEBUG:true}  # The operationName max length # agent.operation_name_threshold=${SW_AGENT_OPERATION_NAME_THRESHOLD:500}  # Backend service addresses. collector.backend_service=${SW_AGENT_COLLECTOR_BACKEND_SERVICES:127.0.0.1:11800}  # Logging file_name logging.file_name=${SW_LOGGING_FILE_NAME:skywalking-api.log}  # Logging level logging.level=${SW_LOGGING_LEVEL:DEBUG}  # Logging dir # logging.dir=${SW_LOGGING_DIR:""}  # Logging max_file_size, default: 300 * 1024 * 1024 = 314572800 # logging.max_file_size=${SW_LOGGING_MAX_FILE_SIZE:314572800}  # The max history log files. When rollover happened, if log files exceed this number, # then the oldest file will be delete. Negative or zero means off, by default. # logging.max_history_files=${SW_LOGGING_MAX_HISTORY_FILES:-1}  # mysql plugin configuration # plugin.mysql.trace_sql_parameters=${SW_MYSQL_TRACE_SQL_PARAMETERS:false}
  1. SkyWalking 架构

来自官网的图片,感受一下!无须细说,大概原理就是: 针对各种不同客户端实现不同的指标采集,统一通过grpc/http发送到apm服务端,然后经过分析引擎后存储到es/h2/mysql等等存储系统,最后由前端通过查询引擎进行展现。
SkyWalking 快速接入实践

  1. 可以用来干啥

发现系统耗时或者说瓶颈在哪里。

发现各系统之间的调用关系。

监控服务异常。

排查系统故障。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
java中比较两个时间的差值
项目背景1.某篇文稿的发布时间是publishDate,例如:2020072118:00:41。2.现要求判断该篇文稿的发布时间是否在近30天之内。publicstaticlongdayDiff(DatecurrentDate,DatepublishDate){LongcurrentTimecurrentDat
Easter79 Easter79
3年前
Twitter的分布式自增ID算法snowflake (Java版)
概述分布式系统中,有一些需要使用全局唯一ID的场景,这种时候为了防止ID冲突可以使用36位的UUID,但是UUID有一些缺点,首先他相对比较长,另外UUID一般是无序的。有些时候我们希望能使用一种简单一些的ID,并且希望ID能够按照时间有序生成。而twitter的snowflake解决了这种需求,最初Twitter把存储系统从MySQL迁移
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这