Bytom侧链Vapor源码浅析

Stella981
• 阅读 696

在这篇文章中,作者将从Vapor节点的创建开始,进而拓展讲解Vapor节点出块过程中所涉及的源码。

做为Vapor源码解析系列的第一篇,本文首先对Vapor稍加介绍。Vapor是目前国内主流公链Bytom的高性能侧链,是从Bytom主链中发展出来的一条独立的高性能侧链。Vapor是平台最重要的区块链基础设施之一,目前采用DPoS的共识算法,具有高性能、高安全、可扩展等特点,用于搭建规模化的商业应用。

Vapor节点创建及出块模块的启动

Vapor入口函数:

vapor/cmd/vapord/main.go

func main() {
    cmd := cli.PrepareBaseCmd(commands.RootCmd, "TM", os.ExpandEnv(config.DefaultDataDir()))
    cmd.Execute()
}

传入参数node后会调用runNode函数并新建一个节点。

vapor/cmd/vapord/commands/run_node.go

func runNode(cmd *cobra.Command, args []string) error {
    startTime := time.Now()
    setLogLevel(config.LogLevel)

    // Create & start node
    n := node.NewNode(config)
    ……
}

vapor节点的结构:

vapor/node/node.go

type Node struct {
    cmn.BaseService

    config          *cfg.Config
    eventDispatcher *event.Dispatcher
    syncManager     *netsync.SyncManager

    wallet          *w.Wallet
    accessTokens    *accesstoken.CredentialStore
    notificationMgr *websocket.WSNotificationManager
    api             *api.API
    chain           *protocol.Chain
    blockProposer   *blockproposer.BlockProposer
    miningEnable    bool
}

其中与出块和共识相关的是blockProposer字段

新建节点的部分源码

vapor/node/node.go

func NewNode(config *cfg.Config) *Node {
    //……
    node := &Node{
        eventDispatcher: dispatcher,
        config:          config,
        syncManager:     syncManager,
        accessTokens:    accessTokens,
        wallet:          wallet,
        chain:           chain,
        miningEnable:    config.Mining,

        notificationMgr: notificationMgr,
    }

    node.blockProposer = blockproposer.NewBlockProposer(chain, accounts, txPool, dispatcher)
    node.BaseService = *cmn.NewBaseService(nil, "Node", node)
    return node
}

从这可以看到node.blockProposer本质上是一个vapor的block生成器,实际控制node启动出块的模块是vapor/proposal/blockproposer/blockproposer.go中的:

func (b *BlockProposer) Start() {
    b.Lock()
    defer b.Unlock()

    // Nothing to do if the miner is already running
    if b.started {
        return
    }

    b.quit = make(chan struct{})
    go b.generateBlocks() //出块功能的关键模块

    b.started = true
    log.Infof("block proposer started")
}

出块模块可以通过api启动

vapor/api/miner.go

func (a *API) startMining() Response {
    a.blockProposer.Start()
    if !a.IsMining() {
        return NewErrorResponse(errors.New("Failed to start mining"))
    }
    return NewSuccessResponse("")
}

以上讲解的是节点创建和出块模块启动所涉及的源码。

generateBlocks()函数开始,将要讲解是Vapor出块过程的具体源码。

Vapor的出块机制

Vapor采用的是DPoS的共识机制进行出块。DPoS是由被社区选举的可信帐户(受托人,得票数排行前10位)来创建区块。为了成为正式受托人,用户要去社区拉票,获得足够多用户的信任。用户根据自己持有的加密货币数量占总量的百分比来投票。DPoS机制类似于股份制公司,普通股民进不了董事会,要投票选举代表(受托人)代他们做决策。在讲解Vapor的出块流程之前,要先了解Vapor在DPoS的参数设定。

DPoS的参数信息位于 vapor/consensus/general.go

type DPOSConfig struct {
    NumOfConsensusNode      int64
    BlockNumEachNode        uint64
    RoundVoteBlockNums      uint64
    MinConsensusNodeVoteNum uint64
    MinVoteOutputAmount     uint64
    BlockTimeInterval       uint64
    MaxTimeOffsetMs         uint64
}

接下来对参数进行具体解释

  • NumOfConsensusNode是DPOS中共识节点的数量,Vapor中设置为10,通过投票选出十个负责出块的共识节点。
  • BlockNumEachNode是每个共识节点连续出块的数量,Vapor中设置为12。
  • RoundVoteBlockNums为每轮投票的出块数,Vapor中设置为1200,也就是说每轮投票产生的共识节点会负责出块1200个。
  • MinConsensusNodeVoteNum是成为共识节点要求的最小BTM数量(单位为neu,一亿分之一BTM),Vapor中设置为100000000000000,也就是说一个节点想成为共识节点,账户中至少需要存有100万BTM。
  • MinVoteOutputAmoun为节点进行投票所要求的最小BTM 数量(单位为neu),Vapor中设置为100000000,节点想要参与投票,账户中需要1BTM
  • BlockTimeInterval为最短出块时间间隔,Vapor每间隔0.5秒出一个块。
  • MaxTimeOffsetMs为块时间允许比当前时间提前的最大秒数,在Vapor中设置为2秒。

讲完DPoS的参数设置后,就可以看看Vapor上出块的核心代码 generateBlocks

vapor/proposal/blockproposer/blockproposer.go

func (b *BlockProposer) generateBlocks() {
    xpub := config.CommonConfig.PrivateKey().XPub()
    xpubStr := hex.EncodeToString(xpub[:])
    ticker := time.NewTicker(time.Duration(consensus.ActiveNetParams.BlockTimeInterval) * time.Millisecond)
    defer ticker.Stop()

    for {
        select {
        case <-b.quit:
            return
        case <-ticker.C:
        }
        //1
        bestBlockHeader := b.chain.BestBlockHeader()
        bestBlockHash := bestBlockHeader.Hash()
        now := uint64(time.Now().UnixNano() / 1e6)
        base := now
        if now < bestBlockHeader.Timestamp {
            base = bestBlockHeader.Timestamp
        }
        minTimeToNextBlock := consensus.ActiveNetParams.BlockTimeInterval - base%consensus.ActiveNetParams.BlockTimeInterval
        nextBlockTime := base + minTimeToNextBlock
        if (nextBlockTime - now) < consensus.ActiveNetParams.BlockTimeInterval/10 {
            nextBlockTime += consensus.ActiveNetParams.BlockTimeInterval
        }
        
        //2
        blocker, err := b.chain.GetBlocker(&bestBlockHash, nextBlockTime)
        ……
        if xpubStr != blocker {
            continue
        }
        
        
        //3
        warnDuration := time.Duration(consensus.ActiveNetParams.BlockTimeInterval*warnTimeNum/warnTimeDenom) * time.Millisecond
        criticalDuration := time.Duration(consensus.ActiveNetParams.BlockTimeInterval*criticalTimeNum/criticalTimeDenom) * time.Millisecond
        block, err := proposal.NewBlockTemplate(b.chain, b.accountManager, nextBlockTime, warnDuration, criticalDuration)
        ……
        //4
        isOrphan, err := b.chain.ProcessBlock(block)
        ……
        //5
        log.WithFields(log.Fields{"module": logModule, "height": block.BlockHeader.Height, "isOrphan": isOrphan, "tx": len(block.Transactions)}).Info("proposer processed block")

        if err = b.eventDispatcher.Post(event.NewProposedBlockEvent{Block: *block}); err != nil {
            log.WithFields(log.Fields{"module": logModule, "height": block.BlockHeader.Height, "error": err}).Error("proposer fail on post block")
        }
    }
}

代码经过精简,省略了一些无关紧要的部分,并将重要的部分,分为5个模块。

  1. 计算并调整出块的时间
  2. 通过GetBlocker 获取顺序下一个block的公钥,并与当前块比对,判断当前块的出块顺序是否合法。
  3. 通过b.chain.ProcessBlock根据模板生成了一个block。
  4. 通过chain.ProcessBlock(block)尝试把block加工处理后加到本机持有的区块链上。
  5. 使用logrus框架记录新的块,并像网络中广播。

b.chain.GetBlocker

针对generateBlocks()中几个重要的模块进行拆分讲解。

vapor/protocol/consensus_node_manager.go

GetBlocker()传入当前高度块的哈希和下一个块的出块时间。

// 返回一个特定时间戳的Blocker
func (c *Chain) GetBlocker(prevBlockHash *bc.Hash, timeStamp uint64) (string, error) {
    consensusNodeMap, err := c.getConsensusNodes(prevBlockHash)
    //……

    prevVoteRoundLastBlock, err := c.getPrevRoundLastBlock(prevBlockHash)
    //……
    
    startTimestamp := prevVoteRoundLastBlock.Timestamp + consensus.ActiveNetParams.BlockTimeInterval
    //获取order,xpub为公钥
    order := getBlockerOrder(startTimestamp, timeStamp, uint64(len(consensusNodeMap)))
    for xPub, consensusNode := range consensusNodeMap {
        if consensusNode.Order == order {
            return xPub, nil
        }
    }
    //……
}
  • 通过调用c.getConsensusNodes()获得一个存储共识节点的Map。
  • 获取上一轮投票的最后一个块,在加上最短出块时间间隔,计算得到这一轮的开始时间戳。
  • 调用getBlockerOrder,通过开始时间戳和当前要出块的时间戳计算出这个时间点出块的order。
  • 最后比对consensusNodeMapconsensusNode.Order,并返回公钥。

这个模块是为了找出当前时间戳对应出块的共识节点,并返回节点的公钥。因为DPoS中出块的节点和顺序必须是固定的,而使用generateBlocks()模块尝试出块的共识节点不一定是当前时间的合法出块节点,因此需要本模块通过对比公钥进行节点资格的验证。

proposal.NewBlockTemplate

vapor/proposal/proposal.go

func NewBlockTemplate(chain *protocol.Chain, accountManager *account.Manager, timestamp uint64, warnDuration, criticalDuration time.Duration) (*types.Block, error) {
    builder := newBlockBuilder(chain, accountManager, timestamp, warnDuration, criticalDuration)
    return builder.build()
}


func newBlockBuilder(chain *protocol.Chain, accountManager *account.Manager, timestamp uint64, warnDuration, criticalDuration time.Duration) *blockBuilder {
    preBlockHeader := chain.BestBlockHeader()
    block := &types.Block{
        BlockHeader: types.BlockHeader{
            Version:           1,
            Height:            preBlockHeader.Height + 1,
            PreviousBlockHash: preBlockHeader.Hash(),
            Timestamp:         timestamp,
            BlockCommitment:   types.BlockCommitment{},
            BlockWitness:      types.BlockWitness{Witness: make([][]byte, consensus.ActiveNetParams.NumOfConsensusNode)},
        },
    }

    builder := &blockBuilder{
        chain:             chain,
        accountManager:    accountManager,
        block:             block,
        txStatus:          bc.NewTransactionStatus(),
        utxoView:          state.NewUtxoViewpoint(),
        warnTimeoutCh:     time.After(warnDuration),
        criticalTimeoutCh: time.After(criticalDuration),
        gasLeft:           int64(consensus.ActiveNetParams.MaxBlockGas),
        timeoutStatus:     timeoutOk,
    }
    return builder
}

在Vapor上每个区块有区块头和区块的主体,区块头中包含版本号、高度、上一区块的hash、时间戳等等,主体包括区块链的引用模块、账户管理器、区块头、Transaction状态(版本号和验证状态)、utxo视图等。这一部分的目的是将,区块的各种信息通过模板包装成一个block交给后面的ProcessBlock(block)加工处理。

b.chain.ProcessBlock

vapor/protocol/block.go

func (c *Chain) ProcessBlock(block *types.Block) (bool, error) {
    reply := make(chan processBlockResponse, 1)
    c.processBlockCh <- &processBlockMsg{block: block, reply: reply}
    response := <-reply
    return response.isOrphan, response.err
}


func (c *Chain) blockProcesser() {
    for msg := range c.processBlockCh {
        isOrphan, err := c.processBlock(msg.block)
        msg.reply <- processBlockResponse{isOrphan: isOrphan, err: err}
    }
}

很显然,这只是链更新的入口,block数据通过processBlockMsg结构传入了c.processBlockCh这个管道。随后数据通过blockProcesser()处理后存入了msg.reply管道,而最后处理这个block的是processBlock()函数:

func (c *Chain) processBlock(block *types.Block) (bool, error) {
    //1
    blockHash := block.Hash()
    if c.BlockExist(&blockHash) {
        log.WithFields(log.Fields{"module": logModule, "hash": blockHash.String(), "height": block.Height}).Debug("block has been processed")
        return c.orphanManage.BlockExist(&blockHash), nil
    }
    //2
    c.markTransactions(block.Transactions...)
    //3
    if _, err := c.store.GetBlockHeader(&block.PreviousBlockHash); err != nil {
        c.orphanManage.Add(block)
        return true, nil
    }
    //4
    if err := c.saveBlock(block); err != nil {
        return false, err
    }
    
    bestBlock := c.saveSubBlock(block)
    bestBlockHeader := &bestBlock.BlockHeader

    c.cond.L.Lock()
    defer c.cond.L.Unlock()
    //5
    if bestBlockHeader.PreviousBlockHash == c.bestBlockHeader.Hash() {
        log.WithFields(log.Fields{"module": logModule}).Debug("append block to the end of mainchain")
        return false, c.connectBlock(bestBlock)
    }
    //6
    if bestBlockHeader.Height > c.bestBlockHeader.Height {
        log.WithFields(log.Fields{"module": logModule}).Debug("start to reorganize chain")
        return false, c.reorganizeChain(bestBlockHeader)
    }
    return false, nil
}

processBlock()函数返回的bool表示的是block是否为孤块。

  1. 通过block的hash判断这个block是否已经在链上。若已存在,则报错并返回false(表示该block不是孤块)
  2. 将block中的Transactions标记,后续会调用c.knownTxs.Add()将Transactions加入到Transaction集合中。
  3. 判断是否为孤块,如果是,则调用孤块管理部分的模块处理并返回true。
  4. 保存block,在saveBlock()中会对签名和区块进行验证。
  5. bestBlockHeader.PreviousBlockHash == c.bestBlockHeader.Hash()的情况说明一切正常,新block被添加到链的末端。
  6. bestBlockHeader.Height > c.bestBlockHeader.Height 表示出现了分叉,需要回滚。

总结

本篇文章从Vapor设置出块开始,到出块流程结束,细节层层解析节点设置出块和出块部分所涉及的源码。虽然本文至此篇幅已经比较长,但仍有重要的问题没有讲解清楚。例如,generateBlocks()中的第2点,程序会对出块的顺序进行查验,但这个出块的顺序是怎么获得还未做细致的解析。

那么,下一篇文章将针对Vapor中DPoS机制的细节进行源码级解析。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
可莉 可莉
3年前
10个开源的Python区块链项目
Python不是主流的区块链底层平台开发语言,但是在DApp开发、区块链仿真与数据分析、智能合约安全分析等领域,Python依然是不错的选择。本文介绍了10个最流行的Python区块链项并提供了相应的源代码下载地址。<!more区块链开发教程链接:以太坊(https://www.oschina.net/action/GoToLink
Wesley13 Wesley13
3年前
BFT等5种主流区块链共识的开源实现
共识算法是实现自主产权区块链的必不可少的关键环节,本文列出社区中相对成熟的区块链共识算法开源实现,包括BFT共识、Raft共识、Paxos共识、PoW共识等,可供希望开发自主产权区块链的团队参考学习。相关推荐:区块链开发系列教程(https://www.oschina.net/action/GoToLink?urlhttp%3A%2F%2Fww
Wesley13 Wesley13
3年前
NEO从源码分析看UTXO交易
_0x00前言_社区大佬:“交易是操作区块链的唯一方式。”_0x01交易类型_在NEO中,几乎除了共识之外的所有的对区块链的操作都是一种“交易”,甚至在“交易”面前,合约都只是一个小弟。交易类型的定义在Core中的TransactionType中:源码位置:neo/Core/TransactionType
Wesley13 Wesley13
3年前
VRF在区块链中的应用
最近区块链领域流行了一种“怪病”,许多区块链项目或者设计方案都加入了一个叫做VRFs的算法。那么,(1)什么是VRFs?(2)VRFs在区块链中解决了什么问题?本文旨在介绍VRFs的原理以及在区块链中的用途,不涉及复杂的VRFs的详细设计实现以及安全性证明。VRFs介绍VRFs全称VerifiableRand
Stella981 Stella981
3年前
Sentinel源码解析二(Slot总览)
写在前面本文继续来分析Sentinel的源码,上篇文章对Sentinel的调用过程做了深入分析,主要涉及到了两个概念:插槽链和Node节点。那么接下来我们就根据插槽链的调用关系来依次分析每个插槽(slot)的源码。默认插槽链的调用顺序,以及每种类型Node节点的关系都在上面文章开头分析过Sentinel源码解析一NodeSelecto
Stella981 Stella981
3年前
Bystack跨链技术源码解读
Bystack是由比原链团队提出的一主多侧链架构的BaaS平台。其将区块链应用分为三层架构:底层账本层,侧链扩展层,业务适配层。底层账本层为Layer1,即为目前比较成熟的采用POW共识的Bytom公链。侧链扩展层为Layer2,为多侧链层,vapor侧链即处于Layer2。!(https://oscimg.oschina.net/oscnet/49
Stella981 Stella981
3年前
LF Edge成员档案:Vapor IO
作者:MaemalynnMeanorLFEdge社区由一组代表物联网、企业、云和电信领域的成员公司组成。成员档案博客系列将重点介绍这些成员,以及他们如何贡献和利用开放源代码边缘解决方案。今天,我们坐下来和MattTrifiro,他是VaporIO的CMO和OpenGlossaryofEdgeComputingTSC主席,讨论开放
hashgame776 hashgame776
2年前
哈希竞猜游戏算法原理及特性说明hashgame776
PoH作为一种新的共识算法近期受到了较大的关注,而PooI验证池和PBFT则是联盟链和私链中较为常见的共识算法。1、PoH:即历史时间证明算法,旨在通过将时间本身编码到区块链中来减轻处理块中网络节点的负载。PoH采用创新的分片式时钟,将时间和状态解耦。简单来说就是将全局的时间链和每个区块的时间链分开,状态的更新不再需要全局时间的同步。PoH通过引入一个名叫信