Elasticsearch的基础分布式架构
Elasticsearch对复杂分布式机制的透明隐藏特性
Elasticsearch是一套分布式系统,分布式是为了应对大数据量。
Elasticsearch隐藏了复杂的分布式机制:
- 分片:我们之前随随便便就将一些document插入到es集群中去了,我们没有关心过数据是如何进行分配的、数据到哪个shard中去了。
- 集群发现机制(cluster discovery):如果启动一个新的es进程,那么这个es进程会作为一个node并且发现es集群,然后自动加入进去。
- shard负载均衡:举例,假设现在有3个节点,总共有25个shard要分配到3个节点上去,es会自动进行均分分配,以保证每个节点的均衡的读写负载请求
- shard副本
- 请求路由
- 集群扩容
- shard重分配
Elasticsearch的垂直扩容与水平扩容
扩容方案:
6台服务器,每台容纳1T的数据,马上数据量要增长到8T,这个时候有两个方案。
(1)垂直扩容:重新购置两台服务器,每台服务器的容量就是2T,替换掉老的两台服务器,那么现在6台服务器的总容量就是 4 * 1T + 2 * 2T = 8T。
(2)水平扩容:新购置两台服务器,每台服务器的容量就是1T,直接加入到集群中去,那么现在服务器的总容量就是8 * 1T = 8T
垂直扩容:采购更强大的服务器 ,成本非常高昂,而且会有瓶颈,假设世界上最强大的服务器容量就是10T,但是当你的总数量达到5000T的时候,你要采购多少台最强大的服务器啊。
水平扩容:业界经常采用的方案,采购越来越多的普通服务器,性能比较一般,但是很多普通服务器组织在一起,就能构成强大的计算和存储能力。
增减或减少节点时的数据rebalance
比如现在有4个node,其中3个node中有一个shard,1个node中有2个shard,但是这个时候如果有一个新的node加入进来,则es会自动把其中一个shard分配到刚加入的node上去。
master节点
一个es集群中总会有一个node是master节点:
- 管理es集群的元数据:比如说索引的创建和删除、维护索引元数据;节点的增加和移除、维护集群的数据
- 默认情况下,会自动选择出一台节点作为master节点
- master节点不承载所有的请求,所以不会是单点瓶颈
节点平等的分布式架构
- 节点对等,每个节点都能接收所有的请求
- 自动请求路由:任何一个节点接收到请求后,都可以把这个请求自动路由到相关节点上去处理该请求。
- 响应收集:最原始节点会从其他节点接收响应数据,然后把这些数据返回给客户端。
primary shard 和 replica shard机制再次梳理
一个索引(index)包含多个shard
每个shard都是一个最小工作单元,承载部分数据,lucene实例,完整的建立索引和处理请求的能力。
增减节点时,shard会自动在nodes中负载均衡。
primary shard和replica shard,每个document肯定只存在于某一个primary shard以及其对应的replica shrad中,不可能存在于多个primary shard。
replica shard是primary shard的副本,负责容错,以及承担读请求负载。
primary shard的数量在创建索引的时候就固定了,replica shard的数量可以随时修改。
primary shard的默认数量是5,replica shrad默认数量是1。
primary shard不能和自己的replica shard放在同一个节点上(否则节点宕机时,primary shard和replica shard都丢失了,起不到容错的作用。),但是可以和其它primary shard的replica shard放在同一个节点上。
单node环境下创建index是什么样子的?
单node环境下,创建一个index: 有3个primary shard、3个replica shard
PUT /test_index { "settings" : { "number_of_shards" : 3**,** "number_of_replicas" : 1 } }
集群状态是yellow
这个时候,只会将3个primary shard分配到仅有的一个node上去,另外3个replica shard是无法分配的
集群可以正常工作,但是一旦出现节点宕机,数据全部丢失,而且集群不可用,无法承担任何请求
两个node环境下replica shard是如何分配的?
此时的情况,1个node、3个primary shard、3个replica shard
如果此时新增一个node进来,构成了一个由2个node组成的es集群,如下:
并且:
- primary shard会自动把数据同步到对应的replica shard上去
- 客户端的读请求可以发送到primary shard上去,也可以发送到replica shard上去
Elasticsearch横向扩容
primary shard 和 replica shard自动负载均衡
目前情况:2个node, 3个primary shard,3个replica shard
如果此时给es集群增加一个节点(node),es会自动对primary shard和replica shard进行负载均衡
每个Node有更少的shard, IO/CPU/Memory资源给每个shard分配更多,每个shard性能更好
扩容的极限,6个shard(3个primary shard,3个replica shard),最多扩容到6台机器,每个shard可以占用单台服务器的所有资源,性能最好
超出扩容极限,动态修改replica数量,9个shard(3primary,6 replica),扩容到9台机器,比3台机器时,拥有3倍的读吞吐量
3台机器下,9个shard(3 primary,6 replica),资源更少,但是容错性更好,最多容纳2台机器宕机,6个shard只能容纳0台机器宕机
这里的这些知识点,你综合起来看,就是说,一方面告诉你扩容的原理,怎么扩容,怎么提升系统整体吞吐量;另一方面要考虑到系统的容错性,怎么保证提高容错性,让尽可能多的服务器宕机,保证数据不丢失
Elasticsearch容错机制
master选举、replica容错、数据恢复
目前es集群情况:3个node,9个shard(3个primary shard,6个replica shard)如果此时master node宕机:
因为Node1节点宕机了,所以primary shard0、replica shard1、replica shard2三个3shard就丢失了。master node宕机的一瞬间,primary shard0这个shard就没有了,此时就不是active status,所以集群的状态为red.
容错第一步:master选举,自动选举另外一个node成为新的master,承担起master的责任来:
容错第二步:新master将丢失的primary shard的某个replica shard提升为primary shard,此时cluster status会变为Yellow,因为所有的primary shard都变成了active status,但是,少了一个replica shard,所以不是所有的replica shard都是active。
容错第三步:重启故障的node, new master节点将会把缺失的副本都copy一份到该node上去,而且该node会使用之前已有的shard数据,只是同步一下宕机之后发生的改变。
此时es cluster的状态为green,因为所有的primary shard和replica shard都是active状态。
==========================================================
NRT
Near Realtime,近实时,有两个层面的含义,一是从写入一条数据到这条数据可以被搜索,有一段非常小的延迟(大约1秒左右),二是基于Elasticsearch的搜索和分析操作,耗时可以达到秒级。
Cluster
集群,对外提供索引和搜索的服务,包含一个或多个节点,每个节点属于哪个集群是通过集群名称来决定的(默认名称是elasticsearch),集群名称搞错了后果很严重。命名建议是研发、测试环境、准生产、生产环境用不同的名称增加区分度,例如研发使用es-dev,测试使用es-test,准生产使用es-stg,生产环境使用es-pro这样的名字来区分。如果是中小型应用,集群可以只有一个节点。
Node
单独一个Elasticsearch服务器实例称为一个node,node是集群的一部分,每个node有独立的名称,默认是启动时获取一个UUID作为名称,也可以自行配置,node名称特别重要,Elasticsearch集群是通过node名称进行管理和通信的,一个node只能加入一个Elasticsearch集群当中,集群提供完整的数据存储,索引和搜索的功能,它下面的每个node分摊上述功能(每条数据都会索引到node上)。
shard
分片,是单个Lucene索引,由于单台机器的存储容量是有限的(如1TB),而Elasticsearch索引的数据可能特别大(PB级别,并且30GB/天的写入量),单台机器无法存储全部数据,就需要将索引中的数据切分为多个shard,分布在多台服务器上存储。利用shard可以很好地进行横向扩展,存储更多数据,让搜索和分析等操作分布到多台服务器上去执行,提升集群整体的吞吐量和性能。
shard在使用时比较简单,只需要在创建索引时指定shard的数量即可,剩下的都交给Elasticsearch来完成,只是创建索引时一旦指定shard数量,后期就不能再更改了。
replica
索引副本,完全拷贝shard的内容,shard与replica的关系可以是一对多,同一个shard可以有一个或多个replica,并且同一个shard下的replica数据完全一样,replica作为shard的数据拷贝,承担以下三个任务:
- shard故障或宕机时,其中一个replica可以升级成shard。
- replica保证数据不丢失(冗余机制),保证高可用。
- replica可以分担搜索请求,提升整个集群的吞吐量和性能。
shard的全称叫primary shard,replica全称叫replica shard,primary shard数量在创建索引时指定,后期不能修改,replica shard后期可以修改。默认每个索引的primary shard值为5,replica shard值为1,含义是5个primary shard,5个replica shard,共10个shard。
因此Elasticsearch最小的高可用配置是2台服务器。
Index
索引,具有相同结构的文档集合,类似于关系型数据库的数据库实例(6.0.0版本type废弃后,索引的概念下降到等同于数据库表的级别)。一个集群里可以定义多个索引,如客户信息索引、商品分类索引、商品索引、订单索引、评论索引等等,分别定义自己的数据结构。
索引命名要求全部使用小写,建立索引、搜索、更新、删除操作都需要用到索引名称。
type
类型,原本是在索引(Index)内进行的逻辑细分,但后来发现企业研发为了增强可阅读性和可维护性,制订的规范约束,同一个索引下很少还会再使用type进行逻辑拆分(如同一个索引下既有订单数据,又有评论数据),因而在6.0.0版本之后,此定义废弃。
Document
文档,Elasticsearch最小的数据存储单元,JSON数据格式,类似于关系型数据库的表记录(一行数据),结构定义多样化,同一个索引下的document,结构尽可能相同。
工作原理
简单地了解一下Elasticsearch的工作原理。
启动过程
当Elasticsearch的node启动时,默认使用广播寻找集群中的其他node,并与之建立连接,如果集群已经存在,其中一个节点角色特殊一些,叫coordinate node(协调者,也叫master节点),负责管理集群node的状态,有新的node加入时,会更新集群拓扑信息。如果当前集群不存在,那么启动的node就自己成为coordinate node。
应用程序与集群通信过程
虽然Elasticsearch设置了Coordinate Node用来管理集群,但这种设置对客户端(应用程序)来说是透明的,客户端可以请求任何一个它已知的node,如果该node是集群当前的Coordinate,那么它会将请求转发到相应的Node上进行处理,如果该node不是Coordinate,那么该node会先将请求转交给Coordinate Node,再由Coordinate进行转发,搓着各node返回的数据全部交由Coordinate Node进行汇总,最后返回给客户端。
集群内node有效性检测
正常工作时,Coordinate Node会定期与拓扑结构中的Node进行通信,检测实例是否正常工作,如果在指定的时间周期内,Node无响应,那么集群会认为该Node已经宕机。集群会重新进行均衡:
- 重新分配宕机的Node,其他Node中有该Node的replica shard,选出一个replica shard,升级成为primary shard。
- 重新安置新的shard。
- 拓扑更新,分发给该Node的请求重新映射到目前正常的Node上。
========================================================================
es的索引搜索是以lucene为底层的,但是lucene是没有实现分布式,lucene提供了核心的索引和搜索引擎,ES则提供分布式和高可用。
lucene的工作原理可以见下面的这一篇博文:
ElasticSearch工作原理与插件
ElasticSearch 是一个基于lucene构建的开源的,分布式的,restFul全文本搜索引擎。
1. 基本概念
Index(索引)
ES中的索引类似于传统数据库中的数据库,ES中数据存储于索引中,索引是具有类似特性的文档的集合。
Type(类型)
类型类似于传统库中的表,类型是索引内部的逻辑分区,类型就是为那些拥有相同的域的文档做的预定义。
document(文档)
文档是Lucene索引和搜索的原子单位,它是包含了一个或多个域的容器,基于JSON格式进行表示。
mapping(映射)
所有的文档在存储之前都要首先进行分析。用户可根据需要定义如何将文本分割成token,哪些token应该被过滤掉,以及哪些文本需要进行额外处理等等。
shard(分片),replica(副本)
将一个索引内部的数据分布地存储于多个节点,它通过将一个索引切分为多个底层物理的Lucene索引完成索引数据的分割存储功能,这每一个物理的Lucene索引称为一个分片(shard)。
每个分片其内部都是一个全功能且独立的索引,因此可由集群中的任何主机存储。创建索引时,用户可指定其分片的数量,默认数量为5个。
Shard有两种类型:primary和replica,即主shard及副本shard。
Primary shard用于文档存储,每个新的索引会自动创建5个Primary shard,当然此数量可在索引创建之前通过配置自行定义,不过,一旦创建完成,其Primary shard的数量将不可更改。
Replica shard是Primary Shard的副本,用于冗余数据及提高搜索性能。
每个Primary shard默认配置了一个Replica shard,但也可以配置多个,且其数量可动态更改。ES会根据需要自动增加或减少这些Replica shard的数量。
ES集群可由多个节点组成,各Shard分布式地存储于这些节点上。
ES可自动在节点间按需要移动shard,例如增加节点或节点故障时。简而言之,分片实现了集群的分布式存储,而副本实现了其分布式处理及冗余功能。
ES的restFul
ElasticSearch提供了易用但功能强大的RESTful API以用于与集群进行交互,这些API大体可分为如下四类:
(1) 检查集群、节点、索引等健康与否,以及获取其相关状态与统计信息;
(2) 管理集群、节点、索引数据及元数据;
(3) 执行CRUD操作及搜索操作;
(4) 执行高级搜索操作,例如paging、filtering、scripting、faceting、aggregations及其它操作;
ES的读写原理
es读写底层原理
(1)es写数据过程
1)客户端随机选择一个node发送请求过去,这个node就是coordinating node(协调节点)
2)coordinating node,对document进行路由,将请求转发给对应的node(有primary shard)
3)实际的node上的primary shard处理请求,然后将数据同步到replica node
4)coordinating node,如果发现primary node和所有replica node都搞定之后,就返回响应结果给客户端
在写primary的过程中同时还要持久到本地 :
1)先写入buffer,在buffer里的时候数据是搜索不到的;同时将数据写入translog日志文件
2)如果buffer快满了,或者到一定时间,就会将buffer数据refresh到一个新的segment file中,但是此时数据不是直接进入segment file的磁盘文件的,而是先进入os cache的。这个过程就是refresh。
每隔1秒钟,es将buffer中的数据写入一个新的segment file,每秒钟会产生一个新的磁盘文件,segment file,这个segment file中就存储最近1秒内buffer中写入的数据
但是如果buffer里面此时没有数据,那当然不会执行refresh操作咯,每秒创建换一个空的segment file,如果buffer里面有数据,默认1秒钟执行一次refresh操作,刷入一个新的segment file中
操作系统里面,磁盘文件其实都有一个东西,叫做os cache,操作系统缓存,就是说数据写入磁盘文件之前,会先进入os cache,先进入操作系统级别的一个内存缓存中去
只要buffer中的数据被refresh操作,刷入os cache中,就代表这个数据就可以被搜索到了
为什么叫es是准实时的?NRT,near real-time,准实时。默认是每隔1秒refresh一次的,所以es是准实时的,因为写入的数据1秒之后才能被看到。
可以通过es的restful api或者java api,手动执行一次refresh操作,就是手动将buffer中的数据刷入os cache中,让数据立马就可以被搜索到。
只要数据被输入os cache中,buffer就会被清空了,因为不需要保留buffer了,数据在translog里面已经持久化到磁盘去一份了
3)只要数据进入os cache,此时就可以让这个segment file的数据对外提供搜索了
4)重复1~3步骤,新的数据不断进入buffer和translog,不断将buffer数据写入一个又一个新的segment file中去,每次refresh完buffer清空,translog保留。随着这个过程推进,translog会变得越来越大。当translog达到一定长度的时候,就会触发commit操作。
buffer中的数据,倒是好,每隔1秒就被刷到os cache中去,然后这个buffer就被清空了。所以说这个buffer的数据始终是可以保持住不会填满es进程的内存的。
每次一条数据写入buffer,同时会写入一条日志到translog日志文件中去,所以这个translog日志文件是不断变大的,当translog日志文件大到一定程度的时候,就会执行commit操作。
5)commit操作发生第一步,就是将buffer中现有数据refresh到os cache中去,清空buffer
6)将一个commit point写入磁盘文件,里面标识着这个commit point对应的所有segment file
7)强行将os cache中目前所有的数据都fsync到磁盘文件中去
translog日志文件的作用是什么?就是在你执行commit操作之前,数据要么是停留在buffer中,要么是停留在os cache中,无论是buffer还是os cache都是内存,一旦这台机器死了,内存中的数据就全丢了。
所以需要将数据对应的操作写入一个专门的日志文件,translog日志文件中,一旦此时机器宕机,再次重启的时候,es会自动读取translog日志文件中的数据,恢复到内存buffer和os cache中去。
commit操作:1、写commit point;2、将os cache数据fsync强刷到磁盘上去;3、清空translog日志文件
8)将现有的translog清空,然后再次重启启用一个translog,此时commit操作完成。默认每隔30分钟会自动执行一次commit,但是如果translog过大,也会触发commit。整个commit的过程,叫做flush操作。我们可以手动执行flush操作,就是将所有os cache数据刷到磁盘文件中去。
不叫做commit操作,flush操作。es中的flush操作,就对应着commit的全过程。我们也可以通过es api,手动执行flush操作,手动将os cache中的数据fsync强刷到磁盘上去,记录一个commit point,清空translog日志文件。
9)translog其实也是先写入os cache的,默认每隔5秒刷一次到磁盘中去,所以默认情况下,可能有5秒的数据会仅仅停留在buffer或者translog文件的os cache中,如果此时机器挂了,会丢失5秒钟的数据。但是这样性能比较好,最多丢5秒的数据。也可以将translog设置成每次写操作必须是直接fsync到磁盘,但是性能会差很多。
实际上你在这里,如果面试官没有问你es丢数据的问题,你可以在这里给面试官炫一把,你说,其实es第一是准实时的,数据写入1秒后可以搜索到;可能会丢失数据的,你的数据有5秒的数据,停留在buffer、translog os cache、segment file os cache中,有5秒的数据不在磁盘上,此时如果宕机,会导致5秒的数据丢失。
如果你希望一定不能丢失数据的话,你可以设置个参数,官方文档,百度一下。每次写入一条数据,都是写入buffer,同时写入磁盘上的translog,但是这会导致写性能、写入吞吐量会下降一个数量级。本来一秒钟可以写2000条,现在你一秒钟只能写200条,都有可能。
10)如果是删除操作,commit的时候会生成一个.del文件,里面将某个doc标识为deleted状态,那么搜索的时候根据.del文件就知道这个doc被删除了
11)如果是更新操作,就是将原来的doc标识为deleted状态,然后新写入一条数据
12)buffer每次refresh一次,就会产生一个segment file,所以默认情况下是1秒钟一个segment file,segment file会越来越多,此时会定期执行merge
13)每次merge的时候,会将多个segment file合并成一个,同时这里会将标识为deleted的doc给物理删除掉,然后将新的segment file写入磁盘,这里会写一个commit point,标识所有新的segment file,然后打开segment file供搜索使用,同时删除旧的segment file。
es里的写流程,有4个底层的核心概念,refresh、flush、translog、merge
当segment file多到一定程度的时候,es就会自动触发merge操作,将多个segment file给merge成一个segment file。
(2)es读数据过程
查询,GET某一条数据,写入了某个document,这个document会自动给你分配一个全局唯一的id,doc id,同时也是根据doc id进行hash路由到对应的primary shard上面去。也可以手动指定doc id,比如用订单id,用户id。
你可以通过doc id来查询,会根据doc id进行hash,判断出来当时把doc id分配到了哪个shard上面去,从那个shard去查询
1)客户端发送请求到任意一个node,成为coordinate node
2)coordinate node对document进行路由,将请求转发到对应的node,此时会使用round-robin随机轮询算法,在primary shard以及其所有replica中随机选择一个,让读请求负载均衡
3)接收请求的node返回document给coordinate node
4)coordinate node返回document给客户端
(3)es搜索数据过程
1)客户端发送请求到一个coordinate node
2)协调节点将搜索请求转发到所有的shard对应的primary shard或replica shard也可以
3)query phase:每个shard将自己的搜索结果(其实就是一些doc id),返回给协调节点,由协调节点进行数据的合并、排序、分页等操作,产出最终结果
4)fetch phase:接着由协调节点,根据doc id去各个节点上拉取实际的document数据,最终返回给客户端
(4)搜索的底层原理,倒排索引,画图说明传统数据库和倒排索引的区别
参考如下:
https://www.cnblogs.com/wyt007/p/11373530.html