Flink简单项目整体流程

Stella981
• 阅读 681

项目概述

CDN热门分发网络,日志数据分析,日志数据内容包括

aliyun
CN
E
[17/Jul/2018:17:07:50 +0800]
223.104.18.110
v2.go2yd.com
17168

接入的数据类型就是日志

离线:Flume==>HDFS

实时:  Kafka==>流处理引擎==>ES==>Kibana

数据查询

接口名

功能描述

汇总统计查询

峰值带宽

总流量

总请求数

项目功能

  1. 统计一分钟内每个域名访问产生的流量,Flink接收Kafka的数据进行处理
  2. 统计一分钟内每个用户产生的流量,域名和用户是有对应关系的,Flink接收Kafka的数据进行处理+Flink读取域名和用户的配置数据(在MySQL中)进行处理

项目架构

Flink简单项目整体流程

Mock数据

@Component @Slf4j public class KafkaProducer { private static final String TOPIC = "pktest"; @Autowired private KafkaTemplate<String,String> kafkaTemplate; @SuppressWarnings("unchecked") public void produce(String message) { try { ListenableFuture future = kafkaTemplate.send(TOPIC, message); SuccessCallback<SendResult<String,String>> successCallback = new SuccessCallback<SendResult<String, String>>() { @Override public void onSuccess(@Nullable SendResult<String, String> result) { log.info("发送消息成功"); } }; FailureCallback failureCallback = new FailureCallback() { @Override public void onFailure(Throwable ex) { log.error("发送消息失败",ex); produce(message); } }; future.addCallback(successCallback,failureCallback); } catch (Exception e) { log.error("发送消息异常",e); } }

@Scheduled(fixedRate \= 1000 \* 2)
public void send() {
    StringBuilder builder = new StringBuilder();

builder.append("aliyun").append("\t") .append("CN").append("\t") .append(getLevels()).append("\t") .append(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss") .format(new Date())).append("\t") .append(getIps()).append("\t") .append(getDomains()).append("\t") .append(getTraffic()).append("\t"); log.info(builder.toString()); produce(builder.toString()); }

_/\*\*

_ * 生产Level数据 * _@return _ _*/ _ private String getLevels() { List levels = Arrays.asList("M","E"); return levels.get(new Random().nextInt(levels.size())); }

_/\*\*

_ * 生产IP数据 * _@return _ _*/ _ private String getIps() { List ips = Arrays.asList("222.104.18.111", "223.101.75.185", "27.17.127.133", "183.225.121.16", "112.1.65.32", "175.147.222.190", "183.227.43.68", "59.88.168.87", "117.28.44.29", "117.59.34.167"); return ips.get(new Random().nextInt(ips.size())); }

_/\*\*

_ * 生产域名数据 * _@return _ _*/ _ private String getDomains() { List domains = Arrays.asList("v1.go2yd.com", "v2.go2vd.com", "v3.go2yd.com", "v4.go2yd.com", "vmi.go2yd.com"); return domains.get(new Random().nextInt(domains.size())); }

_/\*\*

_ * 生产流量数据 * _@return _ _*/ _ private int getTraffic() { return new Random().nextInt(10000); } }

关于Springboot Kafka其他配置请参考Springboot2整合Kafka

打开Kafka服务器消费者,可以看到

Flink简单项目整体流程

说明Kafka数据发送成功

Flink消费者

public class LogAnalysis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); data.print().setParallelism(1); env.execute("LogAnalysis"); } }

接收到的消息

aliyun    CN    M    2021-01-31 23:43:07    222.104.18.111    v1.go2yd.com    4603    
aliyun    CN    E    2021-01-31 23:43:09    222.104.18.111    v4.go2yd.com    6313    
aliyun    CN    E    2021-01-31 23:43:11    222.104.18.111    v2.go2vd.com    4233    
aliyun    CN    E    2021-01-31 23:43:13    222.104.18.111    v4.go2yd.com    2691    
aliyun    CN    E    2021-01-31 23:43:15    183.225.121.16    v1.go2yd.com    212    
aliyun    CN    E    2021-01-31 23:43:17    183.225.121.16    v4.go2yd.com    7744    
aliyun    CN    M    2021-01-31 23:43:19    175.147.222.190    vmi.go2yd.com    1318

数据清洗

数据清洗就是按照我们的业务规则把原始输入的数据进行一定业务规则的处理,使得满足我们业务需求为准

@Slf4j public class LogAnalysis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level,time,domain,traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String,Long,String,String>, Tuple3<Long,String,Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1),value.getField(2),Long.parseLong(value.getField(3))); } }) .print().setParallelism(1); env.execute("LogAnalysis"); } }

运行结果

(1612130315000,v1.go2yd.com,533)
(1612130319000,v4.go2yd.com,8657)
(1612130321000,vmi.go2yd.com,4353)
(1612130327000,v1.go2yd.com,9566)
(1612130329000,v2.go2vd.com,1460)
(1612130331000,vmi.go2yd.com,1444)
(1612130333000,v3.go2yd.com,6955)
(1612130337000,v1.go2yd.com,9612)
(1612130341000,vmi.go2yd.com,1732)
(1612130345000,v3.go2yd.com,694)

Scala代码

import java.text.SimpleDateFormat import java.util.Properties

import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.slf4j.LoggerFactory import org.apache.flink.api.scala._

object LogAnalysis { val log = LoggerFactory.getLogger(LogAnalysis.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) .print().setParallelism(1) env.execute("LogAnalysis") } }

数据分析

现在我们要分析的是在一分钟内的域名流量

@Slf4j public class LogAnalysis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level,time,domain,traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String,Long,String,String>, Tuple3<Long,String,Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1),value.getField(2),Long.parseLong(value.getField(3))); } }) .setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple3<Long, String, Long>>() { private Long maxOutOfOrderness = 10000L; private Long currentMaxTimestamp = 0L; @Nullable @Override public Watermark getCurrentWatermark() { return new Watermark(currentMaxTimestamp - maxOutOfOrderness); }

        @Override

public long extractTimestamp(Tuple3<Long, String, Long> element, long previousElementTimestamp) { Long timestamp = element.getField(0); currentMaxTimestamp = Math.max(timestamp,currentMaxTimestamp); return timestamp; } }).keyBy(x -> (String) x.getField(1)) .timeWindow(Time.minutes(1)) //输出格式:一分钟的时间间隔,域名,该域名在一分钟内的总流量 .apply(new WindowFunction<Tuple3<Long,String,Long>, Tuple3<String,String,Long>, String, TimeWindow>() { @Override public void apply(String s, TimeWindow window, Iterable<Tuple3<Long, String, Long>> input, Collector<Tuple3<String, String, Long>> out) throws Exception { List<Tuple3<Long,String,Long>> list = (List) input; Long sum = list.stream().map(x -> (Long) x.getField(2)).reduce((x, y) -> x + y).get(); SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); out.collect(new Tuple3<>(format.format(window.getStart()) + " - " + format.format(window.getEnd()),s,sum)); } }) .print().setParallelism(1); env.execute("LogAnalysis"); } }

运行结果

(2021-02-01 07:14:00 - 2021-02-01 07:15:00,vmi.go2yd.com,6307)
(2021-02-01 07:15:00 - 2021-02-01 07:16:00,v4.go2yd.com,15474)
(2021-02-01 07:15:00 - 2021-02-01 07:16:00,v2.go2vd.com,9210)
(2021-02-01 07:15:00 - 2021-02-01 07:16:00,v3.go2yd.com,190)
(2021-02-01 07:15:00 - 2021-02-01 07:16:00,v1.go2yd.com,12787)
(2021-02-01 07:15:00 - 2021-02-01 07:16:00,vmi.go2yd.com,14250)
(2021-02-01 07:16:00 - 2021-02-01 07:17:00,v4.go2yd.com,33298)
(2021-02-01 07:16:00 - 2021-02-01 07:17:00,v1.go2yd.com,37140)

Scala代码

import java.text.SimpleDateFormat import java.util.Properties

import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.slf4j.LoggerFactory import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks import org.apache.flink.streaming.api.scala.function.WindowFunction import org.apache.flink.streaming.api.watermark.Watermark import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.util.Collector

object LogAnalysis { val log = LoggerFactory.getLogger(LogAnalysis.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) .setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[(Long, String, Long)] { var maxOutOfOrderness: Long = 10000l var currentMaxTimestamp: Long = _

  **override def** getCurrentWatermark: Watermark = {
    **new** Watermark(_currentMaxTimestamp_ \- _maxOutOfOrderness_)
  }

  **override def** extractTimestamp(element: (Long, String, Long), previousElementTimestamp: Long): Long \= {
    **val** timestamp = element.\_1
    _currentMaxTimestamp_ \= Math._max_(timestamp,_currentMaxTimestamp_)
    timestamp
  }
}).keyBy(\_.\_2)
  .timeWindow(Time._minutes_(1))
  .apply(**new** WindowFunction\[(Long,String,Long),(String,String,Long),String,TimeWindow\] {
      **override def** apply(key: String, window: TimeWindow, input: Iterable\[(Long, String, Long)\], out: Collector\[(String, String, Long)\]): Unit \= {
        **val** list = input.toList
        **val** sum = list.map(\_.\_3).sum
        **val** format = **new** SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
        out.collect((format.format(window.getStart) + " - " \+ format.format(window.getEnd),key,sum))
      }
  })
  .print().setParallelism(1)
env.execute("LogAnalysis")

} }

Sink到Elasticsearch

安装ES

我们这里使用的版本为6.2.4

wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-6.2.4.tar.gz

解压缩后进入config目录,编辑elasticsearch.yml,修改

network.host: 0.0.0.0

增加一个非root用户

useradd es

将ES目录下的所有文件更改为es所有者

chown -R es:es elasticsearch-6.2.4

修改/etc/security/limits.conf,将最下方的内容改为

es soft nofile 65536
es hard nofile 65536

修改/etc/sysctl.conf,增加

vm.max_map_count=655360

执行命令

sysctl -p

进入es的bin文件夹,并切换用户es

su es

在es用户下执行

./elasticsearch -d

此时可以在Web界面中看到ES的信息(外网ip:9200)

Flink简单项目整体流程

给Flink添加ES Sink,先添加依赖

org.apache.flink flink-connector-elasticsearch6\_2.11 ${flink.version}

@Slf4j public class LogAnalysis { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); List httpHosts = new ArrayList<>(); httpHosts.add(new HttpHost("外网ip",9200,"http")); ElasticsearchSink.Builder<Tuple3<String,String,Long>> builder = new ElasticsearchSink.Builder<>(httpHosts, new ElasticsearchSinkFunction<Tuple3<String, String, Long>>() { @Override public void process(Tuple3<String, String, Long> value, RuntimeContext runtimeContext, RequestIndexer indexer) { Map<String,Object> json = new HashMap<>(); json.put("time",value.getField(0)); json.put("domain",value.getField(1)); json.put("traffic",value.getField(2)); String id = value.getField(0) + "-" + value.getField(1); indexer.add(Requests.indexRequest() .index("cdn") .type("traffic") .id(id) .source(json)); } }); //设置批量写数据的缓冲区大小 builder.setBulkFlushMaxActions(1); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level,time,domain,traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String,Long,String,String>, Tuple3<Long,String,Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1),value.getField(2),Long.parseLong(value.getField(3))); } }) .setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple3<Long, String, Long>>() { private Long maxOutOfOrderness = 10000L; private Long currentMaxTimestamp = 0L; @Nullable @Override public Watermark getCurrentWatermark() { return new Watermark(currentMaxTimestamp - maxOutOfOrderness); }

        @Override

public long extractTimestamp(Tuple3<Long, String, Long> element, long previousElementTimestamp) { Long timestamp = element.getField(0); currentMaxTimestamp = Math.max(timestamp,currentMaxTimestamp); return timestamp; } }).keyBy(x -> (String) x.getField(1)) .timeWindow(Time.minutes(1)) //输出格式:一分钟的时间间隔,域名,该域名在一分钟内的总流量 .apply(new WindowFunction<Tuple3<Long,String,Long>, Tuple3<String,String,Long>, String, TimeWindow>() { @Override public void apply(String s, TimeWindow window, Iterable<Tuple3<Long, String, Long>> input, Collector<Tuple3<String, String, Long>> out) throws Exception { List<Tuple3<Long,String,Long>> list = (List) input; Long sum = list.stream().map(x -> (Long) x.getField(2)).reduce((x, y) -> x + y).get(); SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); out.collect(new Tuple3<>(format.format(window.getStart()) + " - " + format.format(window.getEnd()),s,sum)); } }) .addSink(builder.build()); env.execute("LogAnalysis"); } }

执行后可以在ES中查询到数据

http://外网ip:9200/cdn/traffic/_search

Flink简单项目整体流程

Flink简单项目整体流程

Scala代码

import java.text.SimpleDateFormat import java.util import java.util.Properties

import org.apache.flink.api.common.functions.RuntimeContext import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.slf4j.LoggerFactory import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks import org.apache.flink.streaming.api.scala.function.WindowFunction import org.apache.flink.streaming.api.watermark.Watermark import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer} import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink import org.apache.flink.util.Collector import org.apache.http.HttpHost import org.elasticsearch.client.Requests

object LogAnalysis { val log = LoggerFactory.getLogger(LogAnalysis.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val httpHosts = new util.ArrayList[HttpHost] httpHosts.add(new HttpHost("外网ip",9200,"http")) val builder = new ElasticsearchSink.Builder[(String,String,Long)](httpHosts,**new** ElasticsearchSinkFunction[(String, String, Long)] { override def process(t: (String, String, Long), runtimeContext: RuntimeContext, indexer: RequestIndexer): Unit = { val json = new util.HashMap[String,Any] json.put("time",t._1) json.put("domain",t._2) json.put("traffic",t._3) val id = t._1 + "-" + t._2 indexer.add(Requests.indexRequest() .index("cdn") .`type`("traffic") .id(id) .source(json)) } }) builder.setBulkFlushMaxActions(1) val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) .setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks[(Long, String, Long)] { var maxOutOfOrderness: Long = 10000l var currentMaxTimestamp: Long = _

  **override def** getCurrentWatermark: Watermark = {
    **new** Watermark(_currentMaxTimestamp_ \- _maxOutOfOrderness_)
  }

  **override def** extractTimestamp(element: (Long, String, Long), previousElementTimestamp: Long): Long \= {
    **val** timestamp = element.\_1
    _currentMaxTimestamp_ \= Math._max_(timestamp,_currentMaxTimestamp_)
    timestamp
  }
}).keyBy(\_.\_2)
  .timeWindow(Time._minutes_(1))
  .apply(**new** WindowFunction\[(Long,String,Long),(String,String,Long),String,TimeWindow\] {
      **override def** apply(key: String, window: TimeWindow, input: Iterable\[(Long, String, Long)\], out: Collector\[(String, String, Long)\]): Unit \= {
        **val** list = input.toList
        **val** sum = list.map(\_.\_3).sum
        **val** format = **new** SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
        out.collect((format.format(window.getStart) + " - " \+ format.format(window.getEnd),key,sum))
      }
  })
  .addSink(builder.build)
env.execute("LogAnalysis")

} }

Kibana图形展示

安装kibana

wget https://artifacts.elastic.co/downloads/kibana/kibana-6.2.4-linux-x86_64.tar.gz

kibana要跟ES保持版本相同,解压缩后进入config目录,编辑kibana.yml

server.host: "host2"
elasticsearch.url: "http://host2:9200"

这里面的内容会根据版本不同会有一些不同,保存后,进入bin目录

切换es用户,执行

./kibana &

访问Web页面,外网ip:5601

Flink简单项目整体流程

这里我做了一个表,一个柱状图

Flink简单项目整体流程

Flink简单项目整体流程

Flink简单项目整体流程

第二个需求,统计一分钟内每个用户产生的流量

在MySQL数据库中新增一张表user_domain_config,字段如下

Flink简单项目整体流程

表中内容如下

Flink简单项目整体流程

数据清洗

_/** _ * 自定义MySQL数据源 */ public class MySQLSource extends RichParallelSourceFunction<Tuple2<String,String>> { private Connection connection; private PreparedStatement pstmt; private Connection getConnection() { Connection conn = null; try { Class.forName("com.mysql.cj.jdbc.Driver"); String url = "jdbc:mysql://外网ip:3306/flink"; conn = DriverManager.getConnection(url,"root","******"); }catch (Exception e) { e.printStackTrace(); } return conn; }

@Override

public void open(Configuration parameters) throws Exception { super.open(parameters); connection = getConnection(); String sql = "select user_id,domain from user_domain_config"; pstmt = connection.prepareStatement(sql); }

@Override

@SuppressWarnings("unchecked") public void run(SourceContext<Tuple2<String,String>> ctx) throws Exception { ResultSet rs = pstmt.executeQuery(); while (rs.next()) { Tuple2 tuple2 = new Tuple2(rs.getString("domain"),rs.getString("user_id")); ctx.collect(tuple2); } pstmt.close(); }

@Override

public void cancel() {

}

@Override

public void close() throws Exception { super.close(); if (pstmt != null) { pstmt.close(); } if (connection != null) { connection.close(); } } }

@Slf4j public class LogAnalysisWithMySQL { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); SingleOutputStreamOperator<Tuple3<Long, String, Long>> logData = data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level, time, domain, traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String, Long, String, String>, Tuple3<Long, String, Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1), value.getField(2), Long.parseLong(value.getField(3))); } }); DataStreamSource<Tuple2<String, String>> mysqlData = env.addSource(new MySQLSource()); //双流汇聚 logData.connect(mysqlData).flatMap(new CoFlatMapFunction<Tuple3<Long,String,Long>, Tuple2<String,String>, Tuple4<Long,String,Long,String>>() { private Map<String,String> userDomainMap = new HashMap<>(); @Override public void flatMap1(Tuple3<Long, String, Long> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { String domain = value.getField(1); String userId = userDomainMap.getOrDefault(domain,""); out.collect(new Tuple4<>(value.getField(0),value.getField(1),value.getField(2),userId)); }

        @Override

public void flatMap2(Tuple2<String, String> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { userDomainMap.put(value.getField(0),value.getField(1)); } }).print().setParallelism(1); env.execute("LogAnalysisWithMySQL"); } }

运行结果

(1612239325000,vmi.go2yd.com,7115,80000001)
(1612239633000,v4.go2yd.com,8412,80000001)
(1612239635000,v3.go2yd.com,3527,80000000)
(1612239639000,v1.go2yd.com,7385,80000000)
(1612239643000,vmi.go2yd.com,8650,80000001)
(1612239645000,vmi.go2yd.com,2642,80000001)
(1612239647000,vmi.go2yd.com,1525,80000001)
(1612239649000,v2.go2vd.com,8832,80000000)

Scala代码

import java.sql.{Connection, DriverManager, PreparedStatement}

import org.apache.flink.configuration.Configuration import org.apache.flink.streaming.api.functions.source.{RichParallelSourceFunction, SourceFunction}

class MySQLSource extends RichParallelSourceFunction[(String,String)]{ var connection: Connection = **null ** var pstmt: PreparedStatement = null def getConnection:Connection = { var conn: Connection = **null ** Class.forName("com.mysql.cj.jdbc.Driver") val url = "jdbc:mysql://外网ip:3306/flink" conn = DriverManager.getConnection(url, "root", "******") conn }

override def open(parameters: Configuration): Unit = { connection = getConnection val sql = "select user_id,domain from user_domain_config" pstmt = connection.prepareStatement(sql) }

override def cancel() = {}

override def run(ctx: SourceFunction.SourceContext[(String, String)]) = { val rs = pstmt.executeQuery() while (rs.next) { val tuple2 = (rs.getString("domain"),rs.getString("user_id")) ctx.collect(tuple2) } pstmt.close() }

override def close(): Unit = { if (pstmt != null) { pstmt.close() } if (connection != null) { connection.close() } } }

import java.text.SimpleDateFormat import java.util.Properties

import com.guanjian.flink.scala.until.MySQLSource import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.functions.co.CoFlatMapFunction import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.apache.flink.util.Collector import org.slf4j.LoggerFactory

import scala.collection.mutable

object LogAnalysisWithMySQL { val log = LoggerFactory.getLogger(LogAnalysisWithMySQL.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) val logData = data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) val mysqlData = env.addSource(new MySQLSource) logData.connect(mysqlData).flatMap(new CoFlatMapFunction[(Long,String,Long),(String,String),(Long,String,Long,String)] { var userDomainMap = mutable.HashMap[String,String]()

  **override def** flatMap1(value: (Long, String, Long), out: Collector\[(Long, String, Long, String)\]) = {
    **val** domain = value.\_2
    **val** userId = _userDomainMap_.getOrElse(domain,"")
    out.collect((value.\_1,value.\_2,value.\_3,userId))
  }

  **override def** flatMap2(value: (String, String), out: Collector\[(Long, String, Long, String)\]) = {
    _userDomainMap_ += value.\_1 -> value.\_2
  }
}).print().setParallelism(1)

env.execute("LogAnalysisWithMySQL")

} }

数据分析

@Slf4j public class LogAnalysisWithMySQL { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); SingleOutputStreamOperator<Tuple3<Long, String, Long>> logData = data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level, time, domain, traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String, Long, String, String>, Tuple3<Long, String, Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1), value.getField(2), Long.parseLong(value.getField(3))); } }); DataStreamSource<Tuple2<String, String>> mysqlData = env.addSource(new MySQLSource()); //双流汇聚 logData.connect(mysqlData).flatMap(new CoFlatMapFunction<Tuple3<Long,String,Long>, Tuple2<String,String>, Tuple4<Long,String,Long,String>>() { private Map<String,String> userDomainMap = new HashMap<>(); @Override public void flatMap1(Tuple3<Long, String, Long> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { String domain = value.getField(1); String userId = userDomainMap.getOrDefault(domain,""); out.collect(new Tuple4<>(value.getField(0),value.getField(1),value.getField(2),userId)); }

        @Override

public void flatMap2(Tuple2<String, String> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { userDomainMap.put(value.getField(0),value.getField(1)); } }).setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple4<Long, String, Long,String>>() { private Long maxOutOfOrderness = 10000L; private Long currentMaxTimestamp = 0L; @Nullable @Override public Watermark getCurrentWatermark() { return new Watermark(currentMaxTimestamp - maxOutOfOrderness); }

        @Override

public long extractTimestamp(Tuple4<Long, String, Long,String> element, long previousElementTimestamp) { Long timestamp = element.getField(0); currentMaxTimestamp = Math.max(timestamp,currentMaxTimestamp); return timestamp; } }).keyBy(x -> (String) x.getField(3)) .timeWindow(Time.minutes(1)) //输出格式:一分钟的时间间隔,用户,该用户在一分钟内的总流量 .apply(new WindowFunction<Tuple4<Long,String,Long,String>, Tuple3<String,String,Long>, String, TimeWindow>() { @Override public void apply(String s, TimeWindow window, Iterable<Tuple4<Long, String, Long, String>> input, Collector<Tuple3<String, String, Long>> out) throws Exception { List<Tuple4<Long, String, Long,String>> list = (List) input; Long sum = list.stream().map(x -> (Long) x.getField(2)).reduce((x, y) -> x + y).get(); SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); out.collect(new Tuple3<>(format.format(window.getStart()) + " - " + format.format(window.getEnd()), s, sum)); } }).print().setParallelism(1); env.execute("LogAnalysisWithMySQL"); } }

运行结果

(2021-02-02 13:58:00 - 2021-02-02 13:59:00,80000000,20933)
(2021-02-02 13:58:00 - 2021-02-02 13:59:00,80000001,6928)
(2021-02-02 13:59:00 - 2021-02-02 14:00:00,80000001,38202)
(2021-02-02 13:59:00 - 2021-02-02 14:00:00,80000000,39394)
(2021-02-02 14:00:00 - 2021-02-02 14:01:00,80000001,23070)
(2021-02-02 14:00:00 - 2021-02-02 14:01:00,80000000,41701)

Scala代码

import java.text.SimpleDateFormat import java.util.Properties

import com.guanjian.flink.scala.until.MySQLSource import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks import org.apache.flink.streaming.api.functions.co.CoFlatMapFunction import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.api.scala.function.WindowFunction import org.apache.flink.streaming.api.watermark.Watermark import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.apache.flink.util.Collector import org.slf4j.LoggerFactory

import scala.collection.mutable

object LogAnalysisWithMySQL { val log = LoggerFactory.getLogger(LogAnalysisWithMySQL.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) val logData = data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) val mysqlData = env.addSource(new MySQLSource) logData.connect(mysqlData).flatMap(new CoFlatMapFunction[(Long,String,Long),(String,String),(Long,String,Long,String)] { var userDomainMap = mutable.HashMap[String,String]()

  **override def** flatMap1(value: (Long, String, Long), out: Collector\[(Long, String, Long, String)\]) = {
    **val** domain = value.\_2
    **val** userId = _userDomainMap_.getOrElse(domain,"")
    out.collect((value.\_1,value.\_2,value.\_3,userId))
  }

  **override def** flatMap2(value: (String, String), out: Collector\[(Long, String, Long, String)\]) = {
    _userDomainMap_ += value.\_1 -> value.\_2
  }
}).setParallelism(1).assignTimestampsAndWatermarks(**new** AssignerWithPeriodicWatermarks\[(Long, String, Long, String)\] {
  **var** _maxOutOfOrderness_: Long \= 10000l

var currentMaxTimestamp: Long = _

  **override def** getCurrentWatermark: Watermark = {
    **new** Watermark(_currentMaxTimestamp_ \- _maxOutOfOrderness_)
  }

  **override def** extractTimestamp(element: (Long, String, Long, String), previousElementTimestamp: Long): Long \= {
    **val** timestamp = element.\_1
    _currentMaxTimestamp_ \= Math._max_(timestamp,_currentMaxTimestamp_)
    timestamp
  }
}).keyBy(\_.\_4)
  .timeWindow(Time._minutes_(1))
  .apply(**new** WindowFunction\[(Long,String,Long,String),(String,String,Long),String,TimeWindow\] {
    **override def** apply(key: String, window: TimeWindow, input: Iterable\[(Long, String, Long, String)\], out: Collector\[(String, String, Long)\]): Unit \= {
      **val** list = input.toList
      **val** sum = list.map(\_.\_3).sum
      **val** format = **new** SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
      out.collect((format.format(window.getStart) + " - " \+ format.format(window.getEnd),key,sum))
    }
  }).print().setParallelism(1)

env.execute("LogAnalysisWithMySQL")

} }

Sink到ES

@Slf4j public class LogAnalysisWithMySQL { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime); String topic = "pktest"; Properties properties = new Properties(); properties.setProperty("bootstrap.servers","外网ip:9092"); properties.setProperty("group.id","test"); List httpHosts = new ArrayList<>(); httpHosts.add(new HttpHost("外网ip",9200,"http")); ElasticsearchSink.Builder<Tuple3<String,String,Long>> builder = new ElasticsearchSink.Builder<>(httpHosts, new ElasticsearchSinkFunction<Tuple3<String, String, Long>>() { @Override public void process(Tuple3<String, String, Long> value, RuntimeContext runtimeContext, RequestIndexer indexer) { Map<String,Object> json = new HashMap<>(); json.put("time",value.getField(0)); json.put("userId",value.getField(1)); json.put("traffic",value.getField(2)); String id = value.getField(0) + "-" + value.getField(1); indexer.add(Requests.indexRequest() .index("user") .type("traffic") .id(id) .source(json)); } }); //设置批量写数据的缓冲区大小 builder.setBulkFlushMaxActions(1); DataStreamSource data = env.addSource(new FlinkKafkaConsumer<>(topic, new SimpleStringSchema(), properties)); SingleOutputStreamOperator<Tuple3<Long, String, Long>> logData = data.map(new MapFunction<String, Tuple4<String, Long, String, String>>() { @Override public Tuple4<String, Long, String, String> map(String value) throws Exception { String[] splits = value.split("\t"); String level = splits[2]; String timeStr = splits[3]; Long time = 0L; try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime(); } catch (ParseException e) { log.error("time转换错误:" + timeStr + "," + e.getMessage()); } String domain = splits[5]; String traffic = splits[6]; return new Tuple4<>(level, time, domain, traffic); } }).filter(x -> (Long) x.getField(1) != 0) //此处我们只需要Level为E的数据 .filter(x -> x.getField(0).equals("E")) //抛弃level .map(new MapFunction<Tuple4<String, Long, String, String>, Tuple3<Long, String, Long>>() { @Override public Tuple3<Long, String, Long> map(Tuple4<String, Long, String, String> value) throws Exception { return new Tuple3<>(value.getField(1), value.getField(2), Long.parseLong(value.getField(3))); } }); DataStreamSource<Tuple2<String, String>> mysqlData = env.addSource(new MySQLSource()); //双流汇聚 logData.connect(mysqlData).flatMap(new CoFlatMapFunction<Tuple3<Long,String,Long>, Tuple2<String,String>, Tuple4<Long,String,Long,String>>() { private Map<String,String> userDomainMap = new HashMap<>(); @Override public void flatMap1(Tuple3<Long, String, Long> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { String domain = value.getField(1); String userId = userDomainMap.getOrDefault(domain,""); out.collect(new Tuple4<>(value.getField(0),value.getField(1),value.getField(2),userId)); }

        @Override

public void flatMap2(Tuple2<String, String> value, Collector<Tuple4<Long,String,Long,String>> out) throws Exception { userDomainMap.put(value.getField(0),value.getField(1)); } }).setParallelism(1).assignTimestampsAndWatermarks(new AssignerWithPeriodicWatermarks<Tuple4<Long, String, Long,String>>() { private Long maxOutOfOrderness = 10000L; private Long currentMaxTimestamp = 0L; @Nullable @Override public Watermark getCurrentWatermark() { return new Watermark(currentMaxTimestamp - maxOutOfOrderness); }

        @Override

public long extractTimestamp(Tuple4<Long, String, Long,String> element, long previousElementTimestamp) { Long timestamp = element.getField(0); currentMaxTimestamp = Math.max(timestamp,currentMaxTimestamp); return timestamp; } }).keyBy(x -> (String) x.getField(3)) .timeWindow(Time.minutes(1)) //输出格式:一分钟的时间间隔,用户,该用户在一分钟内的总流量 .apply(new WindowFunction<Tuple4<Long,String,Long,String>, Tuple3<String,String,Long>, String, TimeWindow>() { @Override public void apply(String s, TimeWindow window, Iterable<Tuple4<Long, String, Long, String>> input, Collector<Tuple3<String, String, Long>> out) throws Exception { List<Tuple4<Long, String, Long,String>> list = (List) input; Long sum = list.stream().map(x -> (Long) x.getField(2)).reduce((x, y) -> x + y).get(); SimpleDateFormat format = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); out.collect(new Tuple3<>(format.format(window.getStart()) + " - " + format.format(window.getEnd()), s, sum)); } }).addSink(builder.build()); env.execute("LogAnalysisWithMySQL"); } }

运行结果

访问http://外网ip:9200/user/traffic/_search

Flink简单项目整体流程

Flink简单项目整体流程

Scala代码

port java.text.SimpleDateFormat import java.util import java.util.Properties

import com.guanjian.flink.scala.until.MySQLSource import org.apache.flink.api.common.functions.RuntimeContext import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.TimeCharacteristic import org.apache.flink.streaming.api.functions.AssignerWithPeriodicWatermarks import org.apache.flink.streaming.api.functions.co.CoFlatMapFunction import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment import org.apache.flink.streaming.api.scala.function.WindowFunction import org.apache.flink.streaming.api.watermark.Watermark import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.streaming.connectors.elasticsearch.{ElasticsearchSinkFunction, RequestIndexer} import org.apache.flink.streaming.connectors.elasticsearch6.ElasticsearchSink import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer import org.apache.flink.util.Collector import org.apache.http.HttpHost import org.elasticsearch.client.Requests import org.slf4j.LoggerFactory

import scala.collection.mutable

object LogAnalysisWithMySQL { val log = LoggerFactory.getLogger(LogAnalysisWithMySQL.getClass)

def main(args: Array[String]): Unit = { val env = StreamExecutionEnvironment._getExecutionEnvironment _ env.setStreamTimeCharacteristic(TimeCharacteristic.EventTime) val topic = "pktest" val properties = new Properties properties.setProperty("bootstrap.servers", "外网ip:9092") properties.setProperty("group.id","test") val httpHosts = new util.ArrayList[HttpHost] httpHosts.add(new HttpHost("外网ip",9200,"http")) val builder = new ElasticsearchSink.Builder[(String,String,Long)](httpHosts,**new** ElasticsearchSinkFunction[(String, String, Long)] { override def process(t: (String, String, Long), runtimeContext: RuntimeContext, indexer: RequestIndexer): Unit = { val json = new util.HashMap[String,Any] json.put("time",t._1) json.put("userId",t._2) json.put("traffic",t._3) val id = t._1 + "-" + t._2 indexer.add(Requests.indexRequest() .index("user") .`type`("traffic") .id(id) .source(json)) } }) builder.setBulkFlushMaxActions(1) val data = env.addSource(new FlinkKafkaConsumer[String](topic, **new** SimpleStringSchema, properties)) val logData = data.map(x => { val splits = x.split("\t") val level = splits(2) val timeStr = splits(3) var time: Long = 0l try { time = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").parse(timeStr).getTime }catch { case e: Exception => { log.error(s"time转换错误: **$**timeStr",e.getMessage) } } val domain = splits(5) val traffic = splits(6) (level,time,domain,traffic) }).filter(_._2 != 0) .filter(_._1 == "E") .map(x => (x._2,x._3,x._4.toLong)) val mysqlData = env.addSource(new MySQLSource) logData.connect(mysqlData).flatMap(new CoFlatMapFunction[(Long,String,Long),(String,String),(Long,String,Long,String)] { var userDomainMap = mutable.HashMap[String,String]()

  **override def** flatMap1(value: (Long, String, Long), out: Collector\[(Long, String, Long, String)\]) = {
    **val** domain = value.\_2
    **val** userId = _userDomainMap_.getOrElse(domain,"")
    out.collect((value.\_1,value.\_2,value.\_3,userId))
  }

  **override def** flatMap2(value: (String, String), out: Collector\[(Long, String, Long, String)\]) = {
    _userDomainMap_ += value.\_1 -> value.\_2
  }
}).setParallelism(1).assignTimestampsAndWatermarks(**new** AssignerWithPeriodicWatermarks\[(Long, String, Long, String)\] {
  **var** _maxOutOfOrderness_: Long \= 10000l

var currentMaxTimestamp: Long = _

  **override def** getCurrentWatermark: Watermark = {
    **new** Watermark(_currentMaxTimestamp_ \- _maxOutOfOrderness_)
  }

  **override def** extractTimestamp(element: (Long, String, Long, String), previousElementTimestamp: Long): Long \= {
    **val** timestamp = element.\_1
    _currentMaxTimestamp_ \= Math._max_(timestamp,_currentMaxTimestamp_)
    timestamp
  }
}).keyBy(\_.\_4)
  .timeWindow(Time._minutes_(1))
  .apply(**new** WindowFunction\[(Long,String,Long,String),(String,String,Long),String,TimeWindow\] {
    **override def** apply(key: String, window: TimeWindow, input: Iterable\[(Long, String, Long, String)\], out: Collector\[(String, String, Long)\]): Unit \= {
      **val** list = input.toList
      **val** sum = list.map(\_.\_3).sum
      **val** format = **new** SimpleDateFormat("yyyy-MM-dd HH:mm:ss")
      out.collect((format.format(window.getStart) + " - " \+ format.format(window.getEnd),key,sum))
    }
  }).addSink(builder.build)

env.execute("LogAnalysisWithMySQL")

} }

Kibana图表展示

这里我们就画一个环状图吧

Flink简单项目整体流程

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
Wesley13 Wesley13
3年前
java将前端的json数组字符串转换为列表
记录下在前端通过ajax提交了一个json数组的字符串,在后端如何转换为列表。前端数据转化与请求varcontracts{id:'1',name:'yanggb合同1'},{id:'2',name:'yanggb合同2'},{id:'3',name:'yang
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这