死磕Java泛型(一篇就够)

浪人
• 阅读 2060

Java泛型,算是一个比较容易产生误解的知识点,因为Java的泛型基于擦除实现,在使用Java泛型时,往往会受到泛型实现机制的限制,如果不能深入全面的掌握泛型知识,就不能较好的驾驭使用泛型,同时在阅读开源项目时也会处处碰壁,这一篇就带大家全面深入的死磕Java泛型。

泛型擦除初探

相信泛型大家都使用过,所以一些基础的知识点就不废话了,以免显得啰嗦。
先看下面的一小段代码

public class FruitKata {
    class Fruit {}
    class Apple extends generic.Fruit {}

    public void eat(List fruitList) {}

    public void eat(List<Fruit> fruitList) { }   // error, both methods has the same erasure
} 

我们在FruitKata类中定义了二个eat的方法,参数分别是List和List类型,这时候编译器报错了,并且很智能的给出了“ both methods has the same erasure” 这个错误提示。显然,编译器在抱怨,这二个方法具有同样的签名,嗯~~,这就是泛型擦除存在的一个证据,要进一步验证也很简单。我们通过ByteCode Outline这个插件,可以很方便的查看类被编译后的字节码,这里我们只贴出eat方法的字节码。

 // access flags 0x1
  // signature (Ljava/util/List<Lgeneric/FruitKata$Fruit;>;)V
  // declaration: void eat(java.util.List<generic.FruitKata$Fruit>)
  public eat(Ljava/util/List;)V 

可以看到参数确实已经被擦除为List类型,这里要明确一点是,这里擦除的只是方法内部的泛型信息,而泛型的元信息还是保存在类的class字节码文件中,相信细心的同学已经发现了上面我特意将方法的注释一并贴了出来

 // signature (Ljava/util/List<Lgeneric/FruitKata$Fruit;>;)V 

这个signature字段大有玄机,后面会详细说明。 这里只是以泛型方法来做个说明,其实泛型类,泛型返回值都是类似的,兄弟们可以自己动手试试看。

为什么用擦除来实现泛型

要回答这个问题,需要知道泛型的历史,Java的泛型是在Jdk 1.5 引入的,在此之前Jdk中的容器类等都是用Object来保证框架的灵活性,然后在读取时强转。但是这样做有个很大的问题,那就是类型不安全,编译器不能帮我们提前发现类型转换错误,会将这个风险带到运行时。
引入泛型,也就是为解决类型不安全的问题,但是由于当时java已经被广泛使用,保证版本的向前兼容是必须的,所以为了兼容老版本jdk,泛型的设计者选择了基于擦除的实现。

由于Java的泛型擦除,在运行时,只有一个List类,那么相对于C#的基于膨胀的泛型实现,Java类的数量相对较少,方法区占用的内存就会小一点,也算是一个额外的小优点吧。

泛型擦除带来的问题

由于泛型擦除,下面这些代码都不能编译通过

T t = new T();
T[] arr = new T[10];
List<T> list = new ArrayList<T>();
T instanceof Object 

通配符

作为泛型擦除的补偿,Java引入了通配符

List<? extends Fruit> fruitList;
List<? super Apple> appleList; 

这二个通配符很多同学都存在误解。

? extends

?extends Fruit 表示Fruit是这个传入的泛型的基类(Fruit是泛型的上界),还是以上面的Fruit和Apple为例,看下面这段代码

List<? extends Fruit> fruitList = new ArrayList<>();
fruitList.add(new Fruit());  //error 

按照我们上面对? extends的理解,fruitList应该是可以添加一个Fruit的,但是编译器却给我们报错了。我第一次看到这里时也感觉不太好理解,我们来看个例子就能理解了。

List<? extends Fruit>  fruitList = new ArrayList<>();
List<Apple> appleList = new ArrayList<>();
fruitList = appleList;
fruitList.add(new Fruit());   //error 

如果fruitList允许添加Fruit,我们就将Fruit添加到了AppleList中了,这肯定是不能接受的。

? super

再来看个?super的例子

List<? super Apple> superAppleList = new ArrayList<>();
superAppleList.add(new Apple());
superAppleList.add(new Fruit());  // error 

向superAppleList中添加Apple是可以的,添加Fruit还是会报错,好,上面我们说的这些就是 PECS 原则。

PECS

英文全称,Producer Extends Consumer Super,

  1. 如果需要一个只读的泛型集合,使用?extends T
  2. 如果需要一个只写的泛型集合,使用?super T

我自己是这样来理解通配符的

  1. 因为? extends T给外界的承诺语义是,这个集合内的元素都是T的子类型,但是到底是哪个子类型不知道,所以添加哪个子类型,编译器都认为是危险的,所以直接禁止添加。
  2. 因为? super T 给外界的承诺语义是,这个集合内的元素的下界是T,所以向集合中添加T以及T的子类型是安全的,不会破坏这个承诺语义。
  3. List, List 都是List<? super Apple>的子类型。
    List 是List<? extends Apple>的子类型。

关于泛型的使用,Jdk中有很多经典的应用范例,比如Collections的copy方法

 public static <T> void copy(List<? super T> dest, List<? extends T> src) {
        int srcSize = src.size();
        if (srcSize > dest.size())
            throw new IndexOutOfBoundsException("Source does not fit in dest");

        if (srcSize < COPY_THRESHOLD ||
            (src instanceof RandomAccess && dest instanceof RandomAccess)) {
            for (int i=0; i<srcSize; i++)
                dest.set(i, src.get(i));
        } else {
            ListIterator<? super T> di=dest.listIterator();
            ListIterator<? extends T> si=src.listIterator();
            for (int i=0; i<srcSize; i++) {
                di.next();
                di.set(si.next());
            }
        }
    } 

泛型擦除了,我们还能拿到泛型信息吗

前面我们提到过class字节码中会有个signature字段来保存泛型信息。我们新建一个泛型方法

 public <T extends Apple> T plant(T fruit) {
        return fruit;
    } 

查看class文件的二进制信息,发现里面确实有Signature字段信息。

Signature�%<T:Lgeneric/FruitKata$Apple;>(TT;)TT; 

既然泛型信息还是在class文件中,那我们有没有办法在运行时拿到呢?
办法肯定是有的。
来看一个例子

 Class clazz = HashMap<String, Apple>(){}.getClass();
  Type superType = clazz.getGenericSuperclass();
  if (superType instanceof ParameterizedType) {
  ParameterizedType parameterizedType = (ParameterizedType) superType;
  Type[] actualTypes = parameterizedType.getActualTypeArguments();
   for (Type type : actualTypes) {
            System.out.println(type);
       }
   }

// 打印结果
class java.lang.String
class generic.FruitKata$Apple 

可以看到我们拿到并打印了泛型的原始类型信息。为了加深对泛型使用的理解,我接下来再看几个小例子。

泛型在Gson解析中的使用
String jsonString = ".....";  // 这里省略json字符串
Apple apple = new Gson().fromJson(jsonString, Apple.class); 

这是一段很简单的Gson解析使用代码,我们进一步去看它fromJson的方法实现

 public <T> T fromJson(String json, Class<T> classOfT) throws JsonSyntaxException {
    Object object = fromJson(json, (Type) classOfT);
    return Primitives.wrap(classOfT).cast(object);
  } 

最终会执行到

 TypeToken<T> typeToken = (TypeToken<T>) TypeToken.get(typeOfT);
  TypeAdapter<T> typeAdapter = getAdapter(typeToken);
  T object = typeAdapter.read(reader); 

通过我们传入的Class类型构造TypeToken,然后通过TypeAdapter将json字符串转化为对象T,中间的细节这里就不继续深入了。

泛型在retrofit中的使用

我们在使用retrofit时,一般都会定义一个或多个ApiService接口类

@GET("users/{user}/repos")
Call<List<Repo>> listRepos(@Path("user") String user); 

接口方法的返回值都使用了泛型,所以注定在编译期是要被擦除的,那retrofit是如何得到原始泛型信息的呢。其实有上面的泛型知识以及Gson的使用说明,相信大家以及有答案了。
retrofit框架本身设计的很优雅,细节这里我们不深入展开,这里我们只关心泛型数据转换为返回值的过程。
我们需要定义如下几个类

// ApiService.class
public interface ApiService {
    Observable<List<Apple>> getAppleList();
}

// Apple.class
class Apple extends Fruit {
    private int color;
    private String name;
    public Apple() {}

    public Apple(int color, String name) {
        this.color = color;
        this.name = name;
    }

    @Override
    public String toString() {
        return "color:" + this.color + "; name:" + name;
    }
} 

接下来,我定义一个动态代理,

InvocationHandler handler = new InvocationHandler() {
       @Override
       public Object invoke(Object proxy, Method method, Object[] args) throws Throwable {
            Type returnType = method.getGenericReturnType();
            if (returnType instanceof ParameterizedType) {
               ParameterizedType parameterizedType = (ParameterizedType) returnType;
               Type[] types = parameterizedType.getActualTypeArguments();
               if (types.length > 0) {
                   Type type = types[0];
                   Object object = new Gson().fromJson(mockAppleJsonString(), type);
                   return Observable.just(object);
             }
           }
          return null;
     }
  };

// mock json数据
public static String mockAppleJsonString() {
   List<Apple> apples = new ArrayList<>();
   apples.add(new Apple(1, "红富士"));
   apples.add(new Apple(2, "青苹果"));
   return new Gson().toJson(apples);
} 

接下来就是正常的调用了,这里模拟了retrofit数据转换的过程。

ApiService apiService = (ApiService) Proxy.newProxyInstance(ProxyKata.class.getClassLoader(),
                new Class[] {ApiService.class}, handler);

Observable<List<Apple>> call = apiService.getAppleList();
if (call != null) {
      call.subscribe(apples -> {
           if (apples != null) {
              for (Apple apple : apples) {
                 System.out.println(apple);
              }
         }
     });
}

// 输出结果
color:1; name:红富士
color:2; name:青苹果 
泛型在MVP中的应用

MVP模式相信做Android开发的没人不知道,假设我们有这样几个类

public class BaseActivity<V extends IView, P extends IPresenter<V>> extends AppCompatActivity {
   protected P mPresenter;
  //....
}
public class MainActivity extends BaseActivity<MainView, MainPresenter> implements MainView {
  //....
} 

由于泛型擦除的关系,我们不能在BaseActivity中直接新建Presenter来初始化mPresenter,所以一般通常的做法是暴露一个createPresenter方法让子类重写。但是今天我们介绍另外一种方法,直接看代码

// BaseActivity.class
        Type superType = getClass().getGenericSuperclass();
        if (superType instanceof ParameterizedType) {
            ParameterizedType parameterizedType = (ParameterizedType) superType;
            Type[] types = parameterizedType.getActualTypeArguments();
            for (Type type : types) {
                if (type instanceof Class) {
                    Class clazz = (Class) type;
                    try {
                        mPresenter = (P) clazz.newInstance();
                        mPresenter.bindView((V) this);
                    } catch (IllegalAccessException e) {
                        e.printStackTrace();
                    } catch (InstantiationException e) {
                        e.printStackTrace();
                    }
                }
            }
        } 

我们通过在BaseActivity中是能够拿到泛型的原始信息的,通过反射初始化出来mPresenter,并调用bindView来绑定我们的视图接口。通过这种方式,我们利用泛型的能力,基类包办了所有的初始化任务,不但逻辑简单,而且也体现了高内聚,在实际项目中可以尝试使用。

总结

深入理解Java泛型是工程师进阶的必备技能,希望你看了这篇文章,在今后,不论是面试还是其他的时候,谈到Java泛型时都能够云淡风轻,在使用泛型编写代码时也能够信手拈来。

点赞
收藏
评论区
推荐文章
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Wesley13 Wesley13
3年前
java 泛型详解
对java的泛型特性的了解仅限于表面的浅浅一层,直到在学习设计模式时发现有不了解的用法,才想起详细的记录一下。本文参考java泛型详解、Java中的泛型方法、java泛型详解1\.概述泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。什么是泛型?为什么要使用泛型?泛型,即“参数化类型”。一提到参数,最熟
Wesley13 Wesley13
3年前
java泛型
一、实现机制java泛型实现方法为类型擦除,基于这种方法实现的泛型称为伪泛型。java泛型只在源代码中存在,在编译后的文件中替换为原生类型,并插入强制转换。(真正的泛型是应该存在于源码、编译后文件、运行期)二、擦除实例源码:List<StringtestListnewArrayList<String();
浪人 浪人
3年前
java 泛型详解-绝对是对泛型方法讲解最详细的,没有之一
java泛型详解绝对是对泛型方法讲解最详细的,没有之一对java的泛型特性的了解仅限于表面的浅浅一层,直到在学习设计模式时发现有不了解的用法,才想起详细的记录一下。本文参考、、1、概述泛型在java中有很重要的地位,在面向对象编程及各种设计模式中有非常广泛的应用。什么是泛型?
Stella981 Stella981
3年前
Gson通过借助TypeToken获取泛型参数的类型的方法
最近在使用Google的Gson包进行Json和Java对象之间的转化,对于包含泛型的类的序列化和反序列化Gson也提供了很好的支持,感觉有点意思,就花时间研究了一下。由于Java泛型的实现机制,使用了泛型的代码在运行期间相关的泛型参数的类型会被擦除,我们无法在运行期间获知泛型参数的具体类型(所有的泛型类型在运行时都是Object类型)。但是有的时候
Wesley13 Wesley13
3年前
Java泛型详解
引言Java泛型是jdk1.5中引入的一个新特性,泛型提供了编译时的类型检测机制,该机制允许程序员在编译时检测到非法的类型。泛型是Java中一个非常重要的知识点,在Java集合类框架中泛型被广泛应用。本文我们将从零开始来看一下Java泛型的设计,将会涉及到通配符处理,以及让人苦恼的类型擦除。泛型基础
Easter79 Easter79
3年前
Thinking in java Chapter15 泛型
1与C比较2简单泛型泛型类3泛型接口4泛型方法5匿名内部类6构建复杂模型78910“泛型”意思就是:适用于许多许多的类型<h2id"1"1与C比较</h2C
Wesley13 Wesley13
3年前
Java的泛型详解(一)
Java的泛型详解(一)编写的代码可以被不同类型的对象所重用。因为上面的一个优点,泛型也可以减少代码的编写。1|2泛型的使用简单泛型类publicclassPair{privateTfirst;privateTsecond;publicPair(){firstnull;secondnull;
Stella981 Stella981
3年前
20175209 《Java程序设计》第八周学习总结
20175209《Java程序设计》第八周学习总结一、教材知识点总结1.泛型1.泛型类声明:格式classPeople<EPeople是泛型类名称E是泛型列表,可以是任何对象或接口,但不能是基本类型数据
可莉 可莉
3年前
20175209 《Java程序设计》第八周学习总结
20175209《Java程序设计》第八周学习总结一、教材知识点总结1.泛型1.泛型类声明:格式classPeople<EPeople是泛型类名称E是泛型列表,可以是任何对象或接口,但不能是基本类型数据