Flink 双流 Join 的3种操作示例

Stella981
• 阅读 733

在数据库中的静态表上做 OLAP 分析时,两表 join 是非常常见的操作。同理,在流式处理作业中,有时也需要在两条流上做 join 以获得更丰富的信息。Flink DataStream API 为用户提供了3个算子来实现双流 join,分别是:

  • join()
  • coGroup()
  • intervalJoin()

本文举例说明它们的使用方法,顺便聊聊比较特殊的 interval join 的原理。

准备数据

从 Kafka 分别接入点击流和订单流,并转化为 POJO。

DataStream<String> clickSourceStream = env
  .addSource(new FlinkKafkaConsumer011<>(
    "ods_analytics_access_log",
    new SimpleStringSchema(),
    kafkaProps
  ).setStartFromLatest());
DataStream<String> orderSourceStream = env
  .addSource(new FlinkKafkaConsumer011<>(
    "ods_ms_order_done",
    new SimpleStringSchema(),
    kafkaProps
  ).setStartFromLatest());

DataStream<AnalyticsAccessLogRecord> clickRecordStream = clickSourceStream
  .map(message -> JSON.parseObject(message, AnalyticsAccessLogRecord.class));
DataStream<OrderDoneLogRecord> orderRecordStream = orderSourceStream
  .map(message -> JSON.parseObject(message, OrderDoneLogRecord.class));

join()

join() 算子提供的语义为"Window join",即按照指定字段和(滚动/滑动/会话)窗口进行 inner join,支持处理时间和事件时间两种时间特征。以下示例以10秒滚动窗口,将两个流通过商品 ID 关联,取得订单流中的售价相关字段。

Flink 双流 Join 的3种操作示例

clickRecordStream
  .join(orderRecordStream)
  .where(record -> record.getMerchandiseId())
  .equalTo(record -> record.getMerchandiseId())
  .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
  .apply(new JoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {
    @Override
    public String join(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord) throws Exception {
      return StringUtils.join(Arrays.asList(
        accessRecord.getMerchandiseId(),
        orderRecord.getPrice(),
        orderRecord.getCouponMoney(),
        orderRecord.getRebateAmount()
      ), '\t');
    }
  })
  .print().setParallelism(1);

简单易用。

coGroup()

只有 inner join 肯定还不够,如何实现 left/right outer join 呢?答案就是利用 coGroup() 算子。它的调用方式类似于 join() 算子,也需要开窗,但是 CoGroupFunction 比 JoinFunction 更加灵活,可以按照用户指定的逻辑匹配左流和/或右流的数据并输出。

以下的例子就实现了点击流 left join 订单流的功能,是很朴素的 nested loop join 思想(二重循环)。

clickRecordStream
  .coGroup(orderRecordStream)
  .where(record -> record.getMerchandiseId())
  .equalTo(record -> record.getMerchandiseId())
  .window(TumblingProcessingTimeWindows.of(Time.seconds(10)))
  .apply(new CoGroupFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, Tuple2<String, Long>>() {
    @Override
    public void coGroup(Iterable<AnalyticsAccessLogRecord> accessRecords, Iterable<OrderDoneLogRecord> orderRecords, Collector<Tuple2<String, Long>> collector) throws Exception {
      for (AnalyticsAccessLogRecord accessRecord : accessRecords) {
        boolean isMatched = false;
        for (OrderDoneLogRecord orderRecord : orderRecords) {
          // 右流中有对应的记录
          collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice()));
          isMatched = true;
        }
        if (!isMatched) {
          // 右流中没有对应的记录
          collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null));
        }
      }
    }
  })
  .print().setParallelism(1);

intervalJoin()

join() 和 coGroup() 都是基于窗口做关联的。但是在某些情况下,两条流的数据步调未必一致。例如,订单流的数据有可能在点击流的购买动作发生之后很久才被写入,如果用窗口来圈定,很容易 join 不上。所以 Flink 又提供了"Interval join"的语义,按照指定字段以及右流相对左流偏移的时间区间进行关联,即:

right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]

Flink 双流 Join 的3种操作示例

interval join 也是 inner join,虽然不需要开窗,但是需要用户指定偏移区间的上下界,并且只支持事件时间。

示例代码如下。注意在运行之前,需要分别在两个流上应用 assignTimestampsAndWatermarks() 方法获取事件时间戳和水印。

clickRecordStream
  .keyBy(record -> record.getMerchandiseId())
  .intervalJoin(orderRecordStream.keyBy(record -> record.getMerchandiseId()))
  .between(Time.seconds(-30), Time.seconds(30))
  .process(new ProcessJoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {
    @Override
    public void processElement(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord, Context context, Collector<String> collector) throws Exception {
      collector.collect(StringUtils.join(Arrays.asList(
        accessRecord.getMerchandiseId(),
        orderRecord.getPrice(),
        orderRecord.getCouponMoney(),
        orderRecord.getRebateAmount()
      ), '\t'));
    }
  })
  .print().setParallelism(1);

由上可见,interval join 与 window join 不同,是两个 KeyedStream 之上的操作,并且需要调用 between() 方法指定偏移区间的上下界。如果想令上下界是开区间,可以调用 upperBoundExclusive()/lowerBoundExclusive() 方法。

interval join 的实现原理

以下是 KeyedStream.process(ProcessJoinFunction) 方法调用的重载方法的逻辑。

public <OUT> SingleOutputStreamOperator<OUT> process(
        ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction,
        TypeInformation<OUT> outputType) {
    Preconditions.checkNotNull(processJoinFunction);
    Preconditions.checkNotNull(outputType);
    final ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);
    final IntervalJoinOperator<KEY, IN1, IN2, OUT> operator =
        new IntervalJoinOperator<>(
            lowerBound,
            upperBound,
            lowerBoundInclusive,
            upperBoundInclusive,
            left.getType().createSerializer(left.getExecutionConfig()),
            right.getType().createSerializer(right.getExecutionConfig()),
            cleanedUdf
        );
    return left
        .connect(right)
        .keyBy(keySelector1, keySelector2)
        .transform("Interval Join", outputType, operator);
}

可见是先对两条流执行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子进行转换。在 IntervalJoinOperator 中,会利用两个 MapState 分别缓存左流和右流的数据。

private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer;
private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer;

@Override
public void initializeState(StateInitializationContext context) throws Exception {
    super.initializeState(context);
    this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        LEFT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))
    ));
    this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(
        RIGHT_BUFFER,
        LongSerializer.INSTANCE,
        new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer))
    ));
}

其中 Long 表示事件时间戳,List> 表示该时刻到来的数据记录。当左流和右流有数据到达时,会分别调用 processElement1() 和 processElement2() 方法,它们都调用了 processElement() 方法,代码如下。

@Override
public void processElement1(StreamRecord<T1> record) throws Exception {
    processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true);
}

@Override
public void processElement2(StreamRecord<T2> record) throws Exception {
    processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false);
}

@SuppressWarnings("unchecked")
private <THIS, OTHER> void processElement(
        final StreamRecord<THIS> record,
        final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,
        final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,
        final long relativeLowerBound,
        final long relativeUpperBound,
        final boolean isLeft) throws Exception {
    final THIS ourValue = record.getValue();
    final long ourTimestamp = record.getTimestamp();
    if (ourTimestamp == Long.MIN_VALUE) {
        throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +
                "interval stream joins need to have timestamps meaningful timestamps.");
    }
    if (isLate(ourTimestamp)) {
        return;
    }
    addToBuffer(ourBuffer, ourValue, ourTimestamp);
    for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {
        final long timestamp  = bucket.getKey();
        if (timestamp < ourTimestamp + relativeLowerBound ||
                timestamp > ourTimestamp + relativeUpperBound) {
            continue;
        }
        for (BufferEntry<OTHER> entry: bucket.getValue()) {
            if (isLeft) {
                collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);
            } else {
                collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);
            }
        }
    }
    long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;
    if (isLeft) {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);
    } else {
        internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);
    }
}

这段代码的思路是:

  1. 取得当前流 StreamRecord 的时间戳,调用 isLate() 方法判断它是否是迟到数据(即时间戳小于当前水印值),如是则丢弃。

  2. 调用 addToBuffer() 方法,将时间戳和数据一起插入当前流对应的 MapState。

  3. 遍历另外一个流的 MapState,如果数据满足前述的时间区间条件,则调用 collect() 方法将该条数据投递给用户定义的 ProcessJoinFunction 进行处理。collect() 方法的代码如下,注意结果对应的时间戳是左右流时间戳里较大的那个。

    private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception { final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp); collector.setAbsoluteTimestamp(resultTimestamp); context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp); userFunction.processElement(left, right, context, collector); }

  4. 调用 TimerService.registerEventTimeTimer() 注册时间戳为 timestamp + relativeUpperBound 的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的 namespace 是不同的,具体逻辑则位于 onEventTime() 方法中。

    @Override public void onEventTime(InternalTimer<K, String> timer) throws Exception { long timerTimestamp = timer.getTimestamp(); String namespace = timer.getNamespace(); logger.trace("onEventTime @ {}", timerTimestamp); switch (namespace) { case CLEANUP_NAMESPACE_LEFT: { long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound; logger.trace("Removing from left buffer @ {}", timestamp); leftBuffer.remove(timestamp); break; } case CLEANUP_NAMESPACE_RIGHT: { long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp; logger.trace("Removing from right buffer @ {}", timestamp); rightBuffer.remove(timestamp); break; } default: throw new RuntimeException("Invalid namespace " + namespace); } }

原文链接

本文为阿里云原创内容,未经允许不得转载。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
4个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
Java日期时间API系列31
  时间戳是指格林威治时间1970年01月01日00时00分00秒起至现在的总毫秒数,是所有时间的基础,其他时间可以通过时间戳转换得到。Java中本来已经有相关获取时间戳的方法,Java8后增加新的类Instant等专用于处理时间戳问题。 1获取时间戳的方法和性能对比1.1获取时间戳方法Java8以前
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
10个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这