HGDB wal文件产生量统计

Stella981
• 阅读 854

目录

环境

文档用途

详细信息

环境

系统平台: Linux x86 Red Hat Enterprise Linux 5,Linux x86 Red Hat Enterprise Linux 6,Linux x86 SLES 11,Linux x86-64 Red Hat Enterprise Linux 5,Linux x86-64 Red Hat Enterprise Linux 6,Linux x86-64 Red Hat Enterprise Linux 7,Linux x86-64 SLES 11,Linux x86-64 SLES 12,Microsoft Windows (32-bit) 2003 R2,Microsoft Windows (32-bit) 2003,Microsoft Windows (32-bit) 2008,Microsoft Windows (32-bit) 7,Microsoft Windows (32-bit) 8,Microsoft Windows (32-bit) 8.1,Microsoft Windows (64-bit) 2003 R2,Microsoft Windows (64-bit) 2008 SP2,Microsoft Windows (64-bit) 2008,Microsoft Windows (64-bit) 2008 R2,Microsoft Windows (64-bit) 2012,Microsoft Windows (64-bit) 2012 R2,Microsoft Windows (64-bit) 7,Microsoft Windows (64-bit) 8,Microsoft Windows (64-bit) 8.1,Microsoft Windows (64-bit) 10,Microsoft Windows (64-bit) XP,中科方德(CPU兆芯),普华Linux(CPU龙芯),中标麒麟(CPU申威)7,中标麒麟(CPU海光)7,中标麒麟(CPU龙芯)6,中标麒麟(CPU飞腾)6,中标麒麟(CPU龙芯)7,中标麒麟(CPU飞腾)7,中标麒麟 (CPU x86-64) 6

版本: 5.6.5,5.6.4,5.6.3,5.6.1,4.3.4.8,4.3.4.7,4.3.4.6,4.3.4.5,4.3.4.4,4.3.4.3,4.3.4.2,4.3.4,4.7.8,4.7.7,4.7.6,4.7.5,4.3.2,4.1.1

文档用途

本文提供企业版及安全版下,查询wal文档的产生量及各个时段的产生量的SQL语句。

详细信息

本文提供的SQL语句因涉及访问操作系统文件,普通用户没有权限,需要使用数据库的管理员用户。

1、企业版V5、安全版V4及更新版本,使用如下SQL语句进行查询,不区分操作系统平台。

select to_char(date_trunc('day',wal.modification),'yyyymmdd') as day_id,

sum(case when date_part('hour',wal.modification) >=0 and date_part('hour',wal.modification) <24 then 1 else 0 end) as wal_all,

sum(case when date_part('hour',wal.modification) >=0 and date_part('hour',wal.modification) <1 then 1 else 0 end) as wal_00_01,

sum(case when date_part('hour',wal.modification) >=1 and date_part('hour',wal.modification) <2 then 1 else 0 end) as wal_01_02,

sum(case when date_part('hour',wal.modification) >=2 and date_part('hour',wal.modification) <3 then 1 else 0 end) as wal_02_03,

sum(case when date_part('hour',wal.modification) >=3 and date_part('hour',wal.modification) <4 then 1 else 0 end) as wal_03_04,

sum(case when date_part('hour',wal.modification) >=4 and date_part('hour',wal.modification) <5 then 1 else 0 end) as wal_04_05,

sum(case when date_part('hour',wal.modification) >=5 and date_part('hour',wal.modification) <6 then 1 else 0 end) as wal_05_06,

sum(case when date_part('hour',wal.modification) >=6 and date_part('hour',wal.modification) <7 then 1 else 0 end) as wal_06_07,

sum(case when date_part('hour',wal.modification) >=7 and date_part('hour',wal.modification) <8 then 1 else 0 end) as wal_07_08,

sum(case when date_part('hour',wal.modification) >=8 and date_part('hour',wal.modification) <9 then 1 else 0 end) as wal_08_09,

sum(case when date_part('hour',wal.modification) >=9 and date_part('hour',wal.modification) <10 then 1 else 0 end) as wal_09_10,

sum(case when date_part('hour',wal.modification) >=10 and date_part('hour',wal.modification) <11 then 1 else 0 end) as wal_10_11,

sum(case when date_part('hour',wal.modification) >=11 and date_part('hour',wal.modification) <12 then 1 else 0 end) as wal_11_12,

sum(case when date_part('hour',wal.modification) >=12 and date_part('hour',wal.modification) <13 then 1 else 0 end) as wal_12_13,

sum(case when date_part('hour',wal.modification) >=13 and date_part('hour',wal.modification) <14 then 1 else 0 end) as wal_13_14,

sum(case when date_part('hour',wal.modification) >=14 and date_part('hour',wal.modification) <15 then 1 else 0 end) as wal_14_15,

sum(case when date_part('hour',wal.modification) >=15 and date_part('hour',wal.modification) <16 then 1 else 0 end) as wal_15_16,

sum(case when date_part('hour',wal.modification) >=16 and date_part('hour',wal.modification) <17 then 1 else 0 end) as wal_16_17,

sum(case when date_part('hour',wal.modification) >=17 and date_part('hour',wal.modification) <18 then 1 else 0 end) as wal_17_18,

sum(case when date_part('hour',wal.modification) >=18 and date_part('hour',wal.modification) <19 then 1 else 0 end) as wal_18_19,

sum(case when date_part('hour',wal.modification) >=19 and date_part('hour',wal.modification) <20 then 1 else 0 end) as wal_19_20,

sum(case when date_part('hour',wal.modification) >=20 and date_part('hour',wal.modification) <21 then 1 else 0 end) as wal_20_21,

sum(case when date_part('hour',wal.modification) >=21 and date_part('hour',wal.modification) <22 then 1 else 0 end) as wal_21_22,

sum(case when date_part('hour',wal.modification) >=22 and date_part('hour',wal.modification) <23 then 1 else 0 end) as wal_22_23,

sum(case when date_part('hour',wal.modification) >=23 and date_part('hour',wal.modification) <24 then 1 else 0 end) as wal_23_24

from (select * from  pg_ls_waldir()) wal

where wal.name not in ('archive_status')

and wal.name not like '%.backup'

group by to_char(date_trunc('day',wal.modification),'yyyymmdd')

order by to_char(date_trunc('day',wal.modification),'yyyymmdd') desc;

执行结果中会统计出,每天各个时段的wal产生量。

2、企业版V4在Linux下的查询语句

with tmp_file as (

select t1.file,

t1.file_ls,

(pg_stat_file(t1.file)).modification as modification,

round( ((pg_stat_file(t1.file)).size)/1024/1024*1.0,1) as log_size_mb

from (select dir||'/'||pg_ls_dir(t0.dir) as file,

pg_ls_dir(t0.dir) as file_ls

from (select 'pg_xlog'::text as dir) t0

) t1

)

select to_char(date_trunc('day',tf0.modification),'yyyymmdd') as day,

sum(case when date_part('hour',tf0.modification) >=0 and date_part('hour',tf0.modification) <24 then 1 else 0 end) as all,

sum(case when date_part('hour',tf0.modification) >=0 and date_part('hour',tf0.modification) <1 then 1 else 0 end) as w0_01,

sum(case when date_part('hour',tf0.modification) >=1 and date_part('hour',tf0.modification) <2 then 1 else 0 end) as w1_02,

sum(case when date_part('hour',tf0.modification) >=2 and date_part('hour',tf0.modification) <3 then 1 else 0 end) as w2_03,

sum(case when date_part('hour',tf0.modification) >=3 and date_part('hour',tf0.modification) <4 then 1 else 0 end) as w3_04,

sum(case when date_part('hour',tf0.modification) >=4 and date_part('hour',tf0.modification) <5 then 1 else 0 end) as w4_05,

sum(case when date_part('hour',tf0.modification) >=5 and date_part('hour',tf0.modification) <6 then 1 else 0 end) as w5_06,

sum(case when date_part('hour',tf0.modification) >=6 and date_part('hour',tf0.modification) <7 then 1 else 0 end) as w6_07,

sum(case when date_part('hour',tf0.modification) >=7 and date_part('hour',tf0.modification) <8 then 1 else 0 end) as w7_08,

sum(case when date_part('hour',tf0.modification) >=8 and date_part('hour',tf0.modification) <9 then 1 else 0 end) as w8_09,

sum(case when date_part('hour',tf0.modification) >=9 and date_part('hour',tf0.modification) <10 then 1 else 0 end) as w9_10,

sum(case when date_part('hour',tf0.modification) >=10 and date_part('hour',tf0.modification) <11 then 1 else 0 end) as wal_10_11,

sum(case when date_part('hour',tf0.modification) >=11 and date_part('hour',tf0.modification) <12 then 1 else 0 end) as wal_11_12,

sum(case when date_part('hour',tf0.modification) >=12 and date_part('hour',tf0.modification) <13 then 1 else 0 end) as wal_12_13,

sum(case when date_part('hour',tf0.modification) >=13 and date_part('hour',tf0.modification) <14 then 1 else 0 end) as wal_13_14,

sum(case when date_part('hour',tf0.modification) >=14 and date_part('hour',tf0.modification) <15 then 1 else 0 end) as wal_14_15,

sum(case when date_part('hour',tf0.modification) >=15 and date_part('hour',tf0.modification) <16 then 1 else 0 end) as wal_15_16,

sum(case when date_part('hour',tf0.modification) >=16 and date_part('hour',tf0.modification) <17 then 1 else 0 end) as wal_16_17,

sum(case when date_part('hour',tf0.modification) >=17 and date_part('hour',tf0.modification) <18 then 1 else 0 end) as wal_17_18,

sum(case when date_part('hour',tf0.modification) >=18 and date_part('hour',tf0.modification) <19 then 1 else 0 end) as wal_18_19,

sum(case when date_part('hour',tf0.modification) >=19 and date_part('hour',tf0.modification) <20 then 1 else 0 end) as wal_19_20,

sum(case when date_part('hour',tf0.modification) >=20 and date_part('hour',tf0.modification) <21 then 1 else 0 end) as wal_20_21,

sum(case when date_part('hour',tf0.modification) >=21 and date_part('hour',tf0.modification) <22 then 1 else 0 end) as wal_21_22,

sum(case when date_part('hour',tf0.modification) >=22 and date_part('hour',tf0.modification) <23 then 1 else 0 end) as wal_22_23,

sum(case when date_part('hour',tf0.modification) >=23 and date_part('hour',tf0.modification) <24 then 1 else 0 end) as wal_23_24

from tmp_file tf0

where tf0.file_ls not in ('archive_status')

and tf0.file_ls not like '%.backup'

group by to_char(date_trunc('day',tf0.modification),'yyyymmdd')

order by to_char(date_trunc('day',tf0.modification),'yyyymmdd') desc;

3、企业版V4在windows下的查询语句

with tmp_file as (

select t1.file,

t1.file_ls,

(pg_stat_file(t1.file)).modification as modification,

round( ((pg_stat_file(t1.file)).size)/1024/1024*1.0,1) as log_size_mb

from (select dir||'\'||pg_ls_dir(t0.dir) as file,

pg_ls_dir(t0.dir) as file_ls

from (select 'pg_xlog'::text as dir) t0

) t1

)

select to_char(date_trunc('day',tf0.modification),'yyyymmdd') as day,

sum(case when date_part('hour',tf0.modification) >=0 and date_part('hour',tf0.modification) <24 then 1 else 0 end) as all,

sum(case when date_part('hour',tf0.modification) >=0 and date_part('hour',tf0.modification) <1 then 1 else 0 end) as w0_01,

sum(case when date_part('hour',tf0.modification) >=1 and date_part('hour',tf0.modification) <2 then 1 else 0 end) as w1_02,

sum(case when date_part('hour',tf0.modification) >=2 and date_part('hour',tf0.modification) <3 then 1 else 0 end) as w2_03,

sum(case when date_part('hour',tf0.modification) >=3 and date_part('hour',tf0.modification) <4 then 1 else 0 end) as w3_04,

sum(case when date_part('hour',tf0.modification) >=4 and date_part('hour',tf0.modification) <5 then 1 else 0 end) as w4_05,

sum(case when date_part('hour',tf0.modification) >=5 and date_part('hour',tf0.modification) <6 then 1 else 0 end) as w5_06,

sum(case when date_part('hour',tf0.modification) >=6 and date_part('hour',tf0.modification) <7 then 1 else 0 end) as w6_07,

sum(case when date_part('hour',tf0.modification) >=7 and date_part('hour',tf0.modification) <8 then 1 else 0 end) as w7_08,

sum(case when date_part('hour',tf0.modification) >=8 and date_part('hour',tf0.modification) <9 then 1 else 0 end) as w8_09,

sum(case when date_part('hour',tf0.modification) >=9 and date_part('hour',tf0.modification) <10 then 1 else 0 end) as w9_10,

sum(case when date_part('hour',tf0.modification) >=10 and date_part('hour',tf0.modification) <11 then 1 else 0 end) as wal_10_11,

sum(case when date_part('hour',tf0.modification) >=11 and date_part('hour',tf0.modification) <12 then 1 else 0 end) as wal_11_12,

sum(case when date_part('hour',tf0.modification) >=12 and date_part('hour',tf0.modification) <13 then 1 else 0 end) as wal_12_13,

sum(case when date_part('hour',tf0.modification) >=13 and date_part('hour',tf0.modification) <14 then 1 else 0 end) as wal_13_14,

sum(case when date_part('hour',tf0.modification) >=14 and date_part('hour',tf0.modification) <15 then 1 else 0 end) as wal_14_15,

sum(case when date_part('hour',tf0.modification) >=15 and date_part('hour',tf0.modification) <16 then 1 else 0 end) as wal_15_16,

sum(case when date_part('hour',tf0.modification) >=16 and date_part('hour',tf0.modification) <17 then 1 else 0 end) as wal_16_17,

sum(case when date_part('hour',tf0.modification) >=17 and date_part('hour',tf0.modification) <18 then 1 else 0 end) as wal_17_18,

sum(case when date_part('hour',tf0.modification) >=18 and date_part('hour',tf0.modification) <19 then 1 else 0 end) as wal_18_19,

sum(case when date_part('hour',tf0.modification) >=19 and date_part('hour',tf0.modification) <20 then 1 else 0 end) as wal_19_20,

sum(case when date_part('hour',tf0.modification) >=20 and date_part('hour',tf0.modification) <21 then 1 else 0 end) as wal_20_21,

sum(case when date_part('hour',tf0.modification) >=21 and date_part('hour',tf0.modification) <22 then 1 else 0 end) as wal_21_22,

sum(case when date_part('hour',tf0.modification) >=22 and date_part('hour',tf0.modification) <23 then 1 else 0 end) as wal_22_23,

sum(case when date_part('hour',tf0.modification) >=23 and date_part('hour',tf0.modification) <24 then 1 else 0 end) as wal_23_24

from tmp_file tf0

where tf0.file_ls not in ('archive_status')

and tf0.file_ls not like '%.backup'

group by to_char(date_trunc('day',tf0.modification),'yyyymmdd')

order by to_char(date_trunc('day',tf0.modification),'yyyymmdd') desc;

以上语句查询结果均如下图所示,第一列为时间,具体到天,第二列为当天产生的总数。第三列之后,为每个时间段产生的日志数量。如w0_1列表示,当天0点到1点产生的wal数量

更多详细信息请登录【瀚高技术支持平台】查看https://support.highgo.com/#/index/docContentHighgo/c3287e0301672491

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
6个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Wesley13 Wesley13
3年前
Java获得今日零时零分零秒的时间(Date型)
publicDatezeroTime()throwsParseException{    DatetimenewDate();    SimpleDateFormatsimpnewSimpleDateFormat("yyyyMMdd00:00:00");    SimpleDateFormatsimp2newS
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
1年前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这