作者:宋利兵
来源:MySQL代码研究(mysqlcode)
0、导读
本文重点介绍了InnoDB的checkpoint和Buffer Pool管理
04 – Checkpoint
理论上来说,如果MySQL数据库InnoDB存储引擎的buffer足够大,就不需要将数据本身持久化。将全部的redo log重新执行一遍就可以恢复所有的数据。但是随着时间的积累,Redo Log会变的很大很大。如果每次都从第一条记录开始恢复,恢复的过程就会很慢,从而无法被容忍。为了减少恢复的时间,就引入了Checkpoint机制。
在了解checkpoint原理之前,先看两个名词:
- 脏页(dirty page)
如果一个数据页在内存中修改了,但是还没有刷新到磁盘。这个数据页就称作脏页。
- 日志顺序号(Log Sequence Number)
LSN是日志空间中每条日志的结束点,用字节偏移量来表示。在Checkpoint和恢复时使用。
- Checkpoint 原理
假设在某个时间点,所有的脏页都被刷新到了磁盘上.这个时间点之前的所有Redo Log就不需要重做了。系统记录下这个时间点时redo log的结尾位置作为checkpoint. 在进行恢复时,从这个checkpoint的位置开始即可。Checkpoint点之前的日志也就不再需要了,可以被清除掉。为了更好的利用日志空间,InnoDB并不会删除以前的Redo Log文件. InnoDB用几个Redo Log文件首尾相连,构建了一个**环形缓存(****circular buffer)**的日志空间。
- 有了Checkpoint之后的Recovery
A. 首先要定期的将Checkpoint写入磁盘中某个地方.
B. 做Recovery时,从磁盘中读出Checkpoint.
C. 根据Checkpoint中的LSN找到Redo Log相应的位置,开始执行Redo Log.
- Sharp Checkpoint
对于繁忙的系统来说,很少会出现这样的的一个时间点。为了能创造出这样一个时间点,最简单的办法就是:
A. 在某个时间开始停止一切更新操作
B. 所有的脏页被刷新到磁盘
C. 记录当前Redo Log的结尾位置到磁盘上.
D. Checkpoint结束,继续更新操作。
Sharp Checkpoint
这个方法称作Sharp Checkpoint,显然对于繁忙的系统, 这种方法是不合适的。能不能在checkpoint时不停止用户的操作呢?
- Fuzzy Checkpoint
现在我们来看看,不停止更新操作的Checkpoint如何做:
A. 选取当前的Redo Log结束位置作为checkpoint点。
B. 将所有checkpoint点之前的脏页写入磁盘.
C. 将checkpoint点的位置持久化到磁盘上.
如下图所示,因为在刷脏页的同时用户还在更新数据,LSN1前的某个脏页在刷到持久存储之前就有可能会被LSN1之后的某个操作又给修改了。当刷脏页到磁盘时,LSN1后的部分操作(R1,R2对应的操作)就会被刷入磁盘。停止更新操作做checkpoint时(Sharp Checkpoint),持久存储中存储的数据是某个确切时间点的内存数据的快照。而不停止更新操作做checkpoint时,持久存储中存储的数据不是某个确切时间点的内存数据的快照。因此被称作Fuzzy Checkpoint.
Fuzzy Checkpoint
- 幂等(Idempotence)规则
如上图所示,checkpoint 在LSN1位置,当checkpoint完成时R1,R2对应的修改也被刷到了持久存储。恢复时要从LSN1位置开始,包括R1, R2在内。虽然,R1,R2的数据已经被刷入持久存储中了,R1,R2两个Redo记录仍然会被重新执。重新执行后,数据还能正确吗?
这就要求InnoDB的Redo Log要满足幂等规则。幂等规则要求无论redo log被重复执行了多少次,数据始终正确。
物理日志天然满足幂等规则
逻辑日志需要特殊处理才能支持幂等规则
前面说过InnoDB的Redo Log是物理到页,页内是逻辑日志。因此需要特殊处理,才能满足幂等规则。
- 数据页的最新(最大)LSN
为了满足幂等规则,InnoDB中每个数据页上都记录有一个LSN。每次更新数据页时,将LSN修改为当前操作的redo log的LSN。在恢复时,如果数据页的LSN大于等于当前redo log的LSN,则跳过此日志。
- 异步Checkpoint
实现了幂等规则后,脏页就可以在任何时间,以任何顺序写入持久存储了。InnoDB的buffer pool有一套单独的机制来刷脏页。因此很多情况下checkpoint时,并不需要写脏页到存储。只是将所有脏页的最小的LSN记做checkpoint.这被称作“异步checkpoint"(不****刷脏页到持久存储)
checkpoint的实现在log0log.c.
log_checkpoint()实现异步checkpoint.
- 同步Checkpoint
InnoDB的buffer pool通过LRU的算法来决定哪些脏页应该被写入持久存储。如果包含最小LSN的页面频繁的被更新,它就不会被刷到存储上。这样就可能导致checkpoint点很长一段时间无法前进,甚至导致日志空间被占满。这时就要按照LSN由小到大的顺序写一部分脏页到持久存储。这被称做"同步Checkpoint"(要刷脏页到持久存储).
log_checkpoint_margin().
log_calc_max_ages()用来计算,‘判断是否要执行同步checkpoint’用到的参数.
05 – 缓存池(Buffer Pool)
学习到这里,我更倾向于说这是一个”Redo+Undo+Buffer”的模式。为了提搞IO性能,脏页缓存在buffer中,Redo log也要先缓存在内存中,doublewrite也有内存buffer.
InnoDB实现了一套Buffer 机制,称作Buffer pool,将存储在文件中的数据以页为单位映射到内存中.
- Buffer Pool的页分类
Buffer pool内的页分为三种:
A. 未被使用的页(空白的buffer),没有映射到一个数据文件中页。
B. 净页,映射到了一个数据文件页,而且没有被修改过。内容和数据文件的页一样。
C. 脏页,映射到了一个数据文件页,并且数据被修改过。内容和数据文件的页不一样。
- Buffer Pool的LRU****页表
InnoDB维护了两个LRU链表。当空间不足时,用来决定哪些脏页应该被首先写入磁盘,哪些净页应该被释放掉。
A. buffer_pool->LRU,普通LRU链表,记录所有数据缓冲页。
B. buffer_pool->unzip_LRU,是压缩页(row_format=compressed)解压后数据缓冲页LRU链表。
LRU链表中的页面按最近一次的访问的时间顺序排列,头部是最近一次被访问的页面,尾部是最早一次被访问的页面。无论是读还是写一个页面上的数据,都要先获取这个页面。因此可以在获取页面时,维护LRU链表.当获取一个页面后,将其放到LRU链表的头部即可。
buf_page_get_gen()和buf_page_get_zip()用来获取一个页面,他们调用
buf_unzip_LRU_add_block()和buf_page_set_accessed_make_young()来维护LRU链表。
- flush_list
同步checkpoint时,需要根据数据页修改的先后顺序来将脏页写入持久存储。因此除了LRU链表,buffer pool中还有一个按脏页修改先后顺序排列的链表,叫flush_list.当需要同步checkpoint时,根据flush_list中页的顺序刷数据到持久存储。
A. 一个页只在flush_list中出现1次,因为一个页面只需要写一次。
B. 按页面最早一次被修改的顺序排列。
06 – Mini-Transaction(MTR)
前面提到Redo Log将数据的操作细分到了页面级别。但是有些在多个页面上的操作是逻辑上不可分裂的。InnoDB中用Mini-Transaction来表示这些不可再细分的逻辑操作。
- MTR的一致性
为了满足MTR的一致性,MTR做了如下的设计:
A. MTR的所有日志被封装在一起,当MTR提交时一起写入redo log buffer.这样做有2个好处:
* 减少并发MTR对redo log buffer 的竞争。
* 连续的存储在一起,恢复时的处理过程更简单。
B. InnoDB在redo log的层面,将一个MTR中的所有日志作为Redo log的最小单元。在恢复时,一个MTR中的所有日志必须是完整的才能进行恢复。
- MTR日志的封装
为了在日志文件中区分不同的MTR,MTR将MLOG_SINGLE_REC_FLAG或MLOG_MULTI_REC_END写入redo log(mtr_log_reserve_and_write()).
A. 如果MTR的日志中只有一行记录,在日志的开始处添加MLOG_SINGLE_REC_FLAG,表示MTR中只有一条记录。
B. 如果MTR的日志中有多行记录,在日志的结尾处添加一个类型为MLOG_MULTI_REC_END的日志,代表MTR的日志到此结束.
- MTR的LSN
A. 因为在将日志写入redo log buffer时,才能获得LSN。所以修改数据时,并没有修改页上的LSN。需要在MTR获得LSN后统一修改。
B. 一个MTR只有一个LSN. 一个MTR内修改的所有页的LSN相同。这样checkpoint就不会出现在MTR的中间。
C. 在获得LSN后,如果被MTR修改的脏页不在buffer pool的flush_list里,就会被添加进去。看mtr_memo_slot_note_modification()和buf_flush_note_modification().
- 页级锁
MTR提交时才写日志到redo log的做法,决定了MTR要使用页级锁。
A. 一个页面不能同时被多个活动的MTR修改。
B. MTR中数据页的锁,直到MTR提交时(日志写入redo log buffer)后才释放。
锁对象存储在mtr的memo中。调用mtr_s_lock和mtr_x_lock来加锁时,锁对象被保存到memo中。解锁在mtr_memo_slot_release()中完成。
- MTR的ROLLBACK
看完MTR的代码发现mtr没有记录undo日志,也不能rollback. MTR都是很小的操作单元,而且每个MTR都有明确的操作目标,因此比较容易保证其正确性。
A. 因为页面操作是在内存中完成,并且页面有固定的格式,因此很多的页面操作是不会失败的。InnoDB存储引擎中的很多写页面的函数都没有返回值.
B. 在对任何页面操作前,先要检查是否可能发生错误。如果可能发生错误就不能往下执行。如,当插入一行记录到B-Tree的节点时,首先检查页面有足够的空间。
C. 使用更大粒度的锁(如B-Tree的锁),并且按照一定的顺序加锁。这样才能不导致死锁问题。以上是自己看代码后的大概印象,不一定说到了正点上。MTR模块的代码虽简单,但是MTR在其他模块大量的使用。要透彻的理解MTR,估计还得要看其他模块的代码,整理出来大部分MTR操作过程才行.
06 – 参考
A. Database Systems: The Complete Book (2nd Edition)
B. Transaction Processing: Concepts and Techniques
C. how-innodb-performs-a-checkpoint
D. InnoDB fuzzy checkpoints
E. Heikki Tuuri Innodb answers – Part I
F. Heikki Tuuri Innodb answers – Part II
其他相关阅读
推荐订阅原文作者 宋利兵 的公众号 MySQL代码研究
本文分享自微信公众号 - 老叶茶馆(iMySQL_WX)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。