Python列表去重的方式有很多,了解它们,进行性能的对比

Stella981
• 阅读 850

本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理

以下文章来源于Python 实用宝典,作者Python 实用宝典

Python列表去重的方式有很多,了解它们,进行性能的对比

前言

列表去重是Python中一种常见的处理方式,任何编程场景都可能会遇到需要列表去重的情况。

列表去重的方式有很多,本文将一一讲解他们,并进行性能的对比。

Python列表去重的方式有很多,了解它们,进行性能的对比

让我们先制造一些简单的数据,生成0到99的100万个随机数:

from random import randrange

DUPLICATES = [randrange(100) for _ in range(1000000)]

接下来尝试这4种去重方式中最简单最直观的一种方法:

1.新建一个数组,遍历原数组,如果值不在新数组里便加入到新数组中。

# 第一种方式
def easy_way():
    unique = []
    for element in DUPLICATES:
        if element not in unique:
            unique.append(element)
    return unique

进入ipython使用timeit计算其去重耗时:

%timeit easy_way()
# 1.16 s ± 137 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

Python列表去重的方式有很多,了解它们,进行性能的对比

平均耗时在1.16秒左右,但是在这个例子中我们使用了数组作为存储对象,实际上如果我们改成集合存储去重后的结果,性能会快不少:

def easy_way():
    unique = set()
    for element in DUPLICATES:
        if element not in unique:
            unique.add(element)
    return unique

%timeit easy_way()
# 48.4 ms ± 11.6 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

平均耗时在48毫秒左右,改善明显,这是因为集合和数组的内在数据结构完全不同,集合使用了哈希表,因此速度会比列表快许多,但缺点在于无序。

接下来看看第2种方式:

2.直接对数组进行集合转化,然后再转回数组:

# 第二种去重方式
def fast_way()
    return list(set(DUPLICATES))

耗时:

%timeit fast_way()
# 14.2 ms ± 1.73 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)

平均耗时14毫秒,这种去重方式是最快的,但正如前面所说,集合是无序的,将数组转为集合后再转为列表,就失去了原有列表的顺序。

如果现在有保留原数组顺序的需要,那么这个方式是不可取的,怎么办呢?

3.保留原有数组顺序的去重

使用dict.fromkeys()函数,可以保留原有数组的顺序并去重:

def save_order():
    return list(dict.fromkeys(DUPLICATES))

当然,它会比单纯用集合进行去重的方式耗时稍微久一点:

%timeit save_order()
# 39.5 ms ± 8.66 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

平均耗时在39.5毫秒,我认为这是可以接受的耗时,毕竟保留了原数组的顺序。

但是,dict.fromkeys()仅在Python3.6及以上才支持。

如果你是Python3.6以下的版本,那么可能要考虑第四种方式了。

4. Python3.6以下的列表保留顺序去重

在Python3.6以下,其实也存在fromkeys函数,只不过它由collections提供:

from collections import OrderedDict
def save_order_below_py36():
    return list(OrderedDict.fromkeys(DUPLICATES))

耗时:

%timeit save_order_below_py36()
# 71.8 ms ± 16.9 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

平均耗时在72毫秒左右,比 Python3.6 的内置dict.fromkeys()慢一些,这是因为OrderedDict是用纯Python实现的。

本文分享 CSDN - 松鼠爱吃饼干。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Stella981 Stella981
3年前
Python 开发:制作一个简易的点菜系统(附源码)
本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理以下文章来源于海唤鱼杂记客栈,作者:海唤鱼杂记客栈!PythonGUI编程:制作一个简易的点菜系统(附源码)(https://oscimg.oschina.net/oscnet/up7f6390bf0f7f63953f8c28
Stella981 Stella981
3年前
Python之time模块的时间戳、时间字符串格式化与转换
Python处理时间和时间戳的内置模块就有time,和datetime两个,本文先说time模块。关于时间戳的几个概念时间戳,根据1970年1月1日00:00:00开始按秒计算的偏移量。时间元组(struct_time),包含9个元素。 time.struct_time(tm_y
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Wesley13 Wesley13
3年前
00:Java简单了解
浅谈Java之概述Java是SUN(StanfordUniversityNetwork),斯坦福大学网络公司)1995年推出的一门高级编程语言。Java是一种面向Internet的编程语言。随着Java技术在web方面的不断成熟,已经成为Web应用程序的首选开发语言。Java是简单易学,完全面向对象,安全可靠,与平台无关的编程语言。
Stella981 Stella981
3年前
Django中Admin中的一些参数配置
设置在列表中显示的字段,id为django模型默认的主键list_display('id','name','sex','profession','email','qq','phone','status','create_time')设置在列表可编辑字段list_editable
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Stella981 Stella981
3年前
Python 分析电影《南方车站的聚会》
前言本文的文字及图片来源于网络,仅供学习、交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理。作者:程序员野客PS:如有需要Python学习资料的小伙伴可以加点击下方链接自行获取http://note.youdao.com/noteshare?id3054cce4add8a909e784ad934f95
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这