NumPy 分割与搜索数组详解

小万哥
• 阅读 429

NumPy 分割数组

NumPy 提供了 np.array_split() 函数来分割数组,将一个数组拆分成多个较小的子数组。

基本用法

语法:

np.array_split(array, indices_or_sections, axis=None)

array: 要分割的 NumPy 数组。 indices_or_sections: 指定分割位置的整数列表或要包含每个子数组的元素数量的列表。 axis: 可选参数,指定要分割的轴。默认为 0(即行分割)。

示例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])

# 将数组分割成 3 个子数组
new_arrays = np.array_split(arr, 3)
print(new_arrays)  # 输出:
                        # [array([1, 2]), array([3, 4]), array([5, 6])]

# 指定分割位置
new_arrays = np.array_split(arr, [2, 5])
print(new_arrays)  # 输出:
                        # [array([1, 2]), array([3, 4]), array([5, 6])]

# 沿列分割
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
new_arrays = np.array_split(arr, 3, axis=1)
print(new_arrays)  # 输出:
                        # [array([[1, 4, 7]]), array([[2, 5, 8]]), array([[3, 6, 9]])]

注意事项

如果 indices_or_sections 指定的分割位置超出数组范围,则会引发异常。 如果数组元素数量不足以满足分割要求,则会从末尾进行调整。 np.array_split() 返回一个包含子数组的列表。

高级用法

除了基本用法之外,np.array_split() 还可以用于更复杂的分割操作:

使用掩码进行分割: 您可以使用掩码数组来指示哪些元素应该包含在每个子数组中。 不均匀分割: 您可以指定每个子数组包含的元素数量,即使数量不均等。 沿着任意轴分割: 您可以使用 axis 参数指定要分割的轴。

例如,以下代码使用掩码将数组分割成两个子数组,第一个子数组包含所有偶数元素,第二个子数组包含所有奇数元素:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6])
mask = arr % 2 == 0
new_arrays = np.array_split(arr, mask)
print(new_arrays)  # 输出:
                        # [array([2, 4, 6]), array([1, 3, 5])]

练习

使用 np.array_split() 将以下数组 arr 沿行分割成 4 个子数组,每个子数组包含相等数量的元素。

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])

在评论中分享您的代码和输出。

Sure, here is the requested Markdown formatted content:

NumPy 搜索数组

NumPy 提供了多种方法来搜索数组中的元素,并返回匹配项的索引。

基本用法:np.where()

语法:

np.where(condition)

condition:用于确定要查找的元素的布尔条件。

功能:

np.where() 逐个元素比较条件,并返回满足条件的元素的索引。 它返回一个元组,其中包含一个或多个数组,每个数组表示满足条件的元素的索引。

示例:

import numpy as np

arr = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9])

# 查找值为 4 的索引
indices = np.where(arr == 4)
print(indices)  # 输出: (array([3, 5, 6]),)

# 查找大于 5 的元素的索引
indices = np.where(arr > 5)
print(indices)  # 输出: (array([6, 7, 8]),)

搜索排序数组:np.searchsorted()

语法:

np.searchsorted(array, value, side='left')

array:已排序的 NumPy 数组。 value:要搜索的值。 side:可选参数,指定搜索方向。默认为 'left'(从左到右)。

功能:

np.searchsorted() 在排序数组中执行二进制搜索,并返回指定值应插入的位置以保持排序顺序。 它假定输入数组已排序。

示例:

import numpy as np

arr = np.array([1, 3, 5, 7, 9])

# 查找值 7 应插入的索引
index = np.searchsorted(arr, 7)
print(index)  # 输出: 3

# 从右侧查找值 2 应插入的索引
index = np.searchsorted(arr, 2, side='right')
print(index)  # 输出: 1

练习

使用 np.where()np.searchsorted() 正确找到以下数组 arr 中所有等于 3 的元素的索引。

import numpy as np

arr = np.array([1, 2, 3, 4, 3, 3, 6, 7, 8])

在评论中分享您的代码和输出。

最后

为了方便其他设备和平台的小伙伴观看往期文章:

微信公众号搜索:Let us Coding,关注后即可获取最新文章推送

看完如果觉得有帮助,欢迎点赞、收藏、关注

点赞
收藏
评论区
推荐文章
Stella981 Stella981
3年前
JavaScript 常用数组函数方法专题
1、由字符串生成数组split() 分割字符串,并将分割的部分作为一个元素保存在一个新建的数组中。varstr1"thisisanemampletousingthemethodofarray.";varstr2str1.split("");//以空格作为分割条件
Wesley13 Wesley13
3年前
PHP创建多级树型结构
<!lang:php<?php$areaarray(array('id'1,'pid'0,'name''中国'),array('id'5,'pid'0,'name''美国'),array('id'2,'pid'1,'name''吉林'),array('id'4,'pid'2,'n
Stella981 Stella981
3年前
Python数据分析
1.numpy\支持多维数组与矩阵的科学计算器包功能:常用功能16条a.ndarrayn维数组/矢量的操作。b. 支持高级大量的n维数组与矩阵的运算。c.针对数组运算提供大量的数学函数库。2.scipy\配合numpy完成对矩阵的计算,因此依赖于numpy,且含多个子模块功能:常用15个函数a. 标准导
Wesley13 Wesley13
3年前
PHP二维数据排序,二维数据模糊查询
一、因为项目中的一个报表需要合并三个表的数据,所以分表查询再合并数据,利用PHP数组函数进行排序,搜索。三表合并后的数组结构如下:Array(0Array(history_id12sla_group_
小万哥 小万哥
7个月前
NumPy 数组切片及数据类型介绍
NumPy数组切片NumPy数组切片用于从数组中提取子集。它类似于Python中的列表切片,但支持多维数组。一维数组切片要从一维数组中提取子集,可以使用方括号并指定切片。切片由起始索引、结束索引和可选步长组成,用冒号:分隔。语法:pythonarrs
小万哥 小万哥
7个月前
NumPy 数组迭代与合并详解
NumPy数组迭代NumPy数组迭代是访问和处理数组元素的重要方法。它允许您逐个或成组地遍历数组元素。基本迭代我们可以使用Python的基本for循环来迭代NumPy数组。一维数组迭代:pythonimportnumpyasnparrnp.array(1
小万哥 小万哥
7个月前
NumPy 数组排序、过滤与随机数生成详解
NumPy数组排序排序数组排序数组意味着将元素按特定顺序排列。顺序可以是数字大小、字母顺序、升序或降序等。NumPy的ndarray对象提供了一个名为sort()的函数,用于对数组进行排序。示例:pythonimportnumpyasnparrnp.arr
小万哥 小万哥
1年前
Python 数组和列表:创建、访问、添加和删除数组元素
Python没有内置支持数组,但可以使用Python列表来代替。数组本页将向您展示如何使用列表作为数组,但要在Python中使用数组,您需要导入一个库,比如NumPy库。数组用于在一个变量中存储多个值:示例,创建一个包含汽车名称的数组:Pythoncars
小万哥 小万哥
7个月前
学会使用 NumPy:基础、随机、ufunc 和练习测试
NumPyNumPy是一个用于处理数组的Python库。它代表“NumericalPython”。基本随机ufunc通过测验测试学习检验您对NumPy的掌握程度。通过练习学习NumPy练习练习:请插入创建NumPy数组的正确方法。pythonarrnp.(
小万哥 小万哥
7个月前
NumPy 数组创建方法与索引访问详解
NumPy创建数组NumPy中的核心数据结构是ndarray,它代表多维数组。NumPy提供了多种方法来创建ndarray对象,包括:使用array()函数array()函数是最常用的方法之一,它可以将Python列表、元组甚至其他数组转换为ndarray