1、启动hadoop工程
2、MapReduce统计文本单词数量
public class WordCount {
private static class WordMapper extends
Mapper<LongWritable, Text, Text, IntWritable> {
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
String string = value.toString();
String[] strs = string.split(" ");
for (String str : strs) {
context.write(new Text(str), new IntWritable(1));
}
}
}
private static class WordReduce extends
Reducer<Text, IntWritable, Text, IntWritable> {
// key 单词 //value:{1,1}
@Override
protected void reduce(Text key, Iterable<IntWritable> values,
Reducer<Text, IntWritable, Text, IntWritable>.Context context)
throws IOException, InterruptedException {
int count = 0;
for (IntWritable value : values) {
count += value.get();
}
context.write(key, new IntWritable(count));
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration configuration = HadoopConfig.getConfiguration();
Job job = Job.getInstance(configuration, "统计单词数目");
job.setJarByClass(WordCount.class);
job.setMapperClass(WordMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(WordReduce.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path("/data"));
FileOutputFormat.setOutputPath(job, new Path("/ouput"));
job.waitForCompletion(true);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
2、MapReduce排除文本重复数据
public class Dup {
private static class DupMapper extends
Mapper<LongWritable, Text, Text, NullWritable> {
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, NullWritable>.Context context)
throws IOException, InterruptedException {
context.write(new Text(value), NullWritable.get());
}
}
private static class DupReduce extends
Reducer<Text, NullWritable, Text, NullWritable> {
@Override
protected void reduce(Text key, Iterable<NullWritable> values,
Reducer<Text, NullWritable, Text, NullWritable>.Context context)
throws IOException, InterruptedException {
context.write(new Text(key), NullWritable.get());
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration configuration = HadoopConfig.getConfiguration();
Job job = Job.getInstance(configuration, "去重");
job.setJarByClass(Dup.class);
job.setMapperClass(DupMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(NullWritable.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(NullWritable.class);
job.setReducerClass(DupReduce.class);
FileInputFormat.addInputPath(job, new Path("/data"));
FileOutputFormat.setOutputPath(job, new Path("/dup"));
job.waitForCompletion(true);
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
3、MapReduce实线文本数据的简单排序
public class Sort {
private static class SortMapper extends
Mapper<LongWritable, Text, IntWritable, IntWritable> {
//输出,输入
@Override
protected void map(
LongWritable key,
Text value_text,
Mapper<LongWritable, Text, IntWritable, IntWritable>.Context context)
throws IOException, InterruptedException {
int value = Integer.parseInt(value_text.toString());
context.write(new IntWritable(value), new IntWritable(1));
}
}
private static class SortReduce extends
Reducer<IntWritable, IntWritable, IntWritable, NullWritable> {
@Override
protected void reduce(
IntWritable key,
Iterable<IntWritable> values,
Reducer<IntWritable, IntWritable, IntWritable, NullWritable>.Context context)
throws IOException, InterruptedException {
for (IntWritable value : values) {
context.write(key, NullWritable.get());
}
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration configuration = HadoopConfig.getConfiguration();
Job job = Job.getInstance(configuration, "排序");
job.setJarByClass(Sort.class);
job.setMapperClass(SortMapper.class);
job.setMapOutputKeyClass(IntWritable.class);
job.setMapOutputValueClass(IntWritable.class);
job.setOutputKeyClass(IntWritable.class);
job.setOutputValueClass(NullWritable.class);
job.setReducerClass(SortReduce.class);
FileInputFormat.addInputPath(job, new Path("/data"));
FileOutputFormat.setOutputPath(job, new Path("/sort"));
job.waitForCompletion(true);
}
4、MapReduce实线单表连接
文本数据如下:
child parent
tom lucy
tom jack
lucy mary
lucy ben
public class Single {
private static class SingleMapper extends
Mapper<LongWritable, Text, Text, Text> {
@Override
protected void map(LongWritable key, Text value,
Mapper<LongWritable, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
String string = value.toString();
if (!string.contains("child")) {
String[] strings = string.split(" ");
context.write(new Text(strings[0]), new Text(strings[1] + ":1"));
context.write(new Text(strings[1]), new Text(strings[0] + ":2"));
}
}
}
// reduce是执行key的次数
private static class SingleReduce extends Reducer<Text, Text, Text, Text> {
@Override
protected void reduce(Text key, Iterable<Text> values,
Reducer<Text, Text, Text, Text>.Context context)
throws IOException, InterruptedException {
List<String> left = Lists.newArrayList();
List<String> right = Lists.newArrayList();
for (Text value : values) {
String[] strings = value.toString().split(":");
if (strings[1].equals("1")) {
right.add(strings[0]);
} else {
left.add(strings[0]);
}
}
for (String lef : left) {
for (String rig : right) {
context.write(new Text(lef), new Text(rig));
}
}
}
}
public static void main(String[] args) throws IOException,
ClassNotFoundException, InterruptedException {
Configuration configuration = HadoopConfig.getConfiguration();
Job job = Job.getInstance(configuration, "单表连接");
job.setJarByClass(Sort.class);
job.setMapperClass(SingleMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(Text.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(Text.class);
job.setReducerClass(SingleReduce.class);
FileInputFormat.addInputPath(job, new Path("/data"));
FileOutputFormat.setOutputPath(job, new Path("/single"));
job.waitForCompletion(true);
}
输出结果如下:
grandchild grandparent //额外加入的,表达思路
tom mary
tom ben