Kafka源码解析(二)

Stella981
• 阅读 624

上一篇文章讲了LogSegment和Log的初始化,这篇来讲讲Log的主要操作有哪些。

一般来说Log 的常见操作分为 4 大部分。

  1. 高水位管理操作
  2. 日志段管理
  3. 关键位移值管理
  4. 读写操作

其中关键位移值管理主要包含Log Start Offset 和 LEO等。

高水位HighWatermark

高水位HighWatermark初始化

高水位是通过LogOffsetMetadata类来定义的:

@volatile private var highWatermarkMetadata: LogOffsetMetadata = LogOffsetMetadata(logStartOffset)

这里传入的初始值是logStartOffset,表明当首次构建高水位时,它会被赋值成 Log Start Offset 值。

我们再来看看LogOffsetMetadata类:

case class LogOffsetMetadata(messageOffset: Long,
                             segmentBaseOffset: Long = Log.UnknownOffset,
                             relativePositionInSegment: Int = LogOffsetMetadata.UnknownFilePosition) {

  // check if this offset is already on an older segment compared with the given offset
  def onOlderSegment(that: LogOffsetMetadata): Boolean = {
    if (messageOffsetOnly)
      throw new KafkaException(s"$this cannot compare its segment info with $that since it only has message offset info")

    this.segmentBaseOffset < that.segmentBaseOffset
  }
  ...
}

LogOffsetMetadata有三个初始值:

messageOffset表示消息位移值;

segmentBaseOffset保存消息位移值所在日志段的起始位移,用来判断两条消息是否处于同一个日志段的;

relativePositionSegment保存消息位移值所在日志段的物理磁盘位置;

上面的onOlderSegment表明,要比较哪个日志段更老,只需要比较segmentBaseOffset的大小就可以了。

高水位HighWatermark设值与更新

  private def updateHighWatermarkMetadata(newHighWatermark: LogOffsetMetadata): Unit = {
    //高水位的值不可能小于零
    if (newHighWatermark.messageOffset < 0)
      throw new IllegalArgumentException("High watermark offset should be non-negative")

    lock synchronized {// 保护Log对象修改的Monitor锁
      highWatermarkMetadata = newHighWatermark// 赋值新的高水位值
      //事务相关,暂时忽略
      producerStateManager.onHighWatermarkUpdated(newHighWatermark.messageOffset)
      //事务相关,暂时忽略
      maybeIncrementFirstUnstableOffset()
    }
    trace(s"Setting high watermark $newHighWatermark")
  }

设置高水位的值是很简单的,首先校验高水位的值是否大于零,然后通过直接加锁之后更新高水位的值。

更新更新高水位值的方法有两个:updateHighWatermark 和 maybeIncrementHighWatermark,我们分别分析。

updateHighWatermark

  def updateHighWatermark(hw: Long): Long = {
    //传入的高水位的值如果小于logStartOffset,设置为logStartOffset
    val newHighWatermark = if (hw < logStartOffset)
      logStartOffset
    //  传入的高水位的值如果大于LEO,那么设置为LEO
    else if (hw > logEndOffset)
      logEndOffset
    else
      hw
    //将newHighWatermark封装成一个LogOffsetMetadata然后更新高水位的值
    updateHighWatermarkMetadata(LogOffsetMetadata(newHighWatermark))
    //返回新的高水位的值
    newHighWatermark
  }

这个方法逻辑也很简洁,因为高水位的值是不可能大于LEO,也不可能小于logStartOffset,所以需要对传入的hw校验然后设置成正确的值,然后调用上面的设置高水位的方法设值。

maybeIncrementHighWatermark

/**
 * Update the high watermark to a new value if and only if it is larger than the old value. It is
 * an error to update to a value which is larger than the log end offset.
 *
 * This method is intended to be used by the leader to update the high watermark after follower
 * fetch offsets have been updated.
 *
 * @return the old high watermark, if updated by the new value
 */
//  当新的高水位的值大于旧的高水位的值时才做更新,如果新的高水位的值大于LEO,会报错
//  这个方法是leader在确认Follower已经拉取了日志之后才做更新
def maybeIncrementHighWatermark(newHighWatermark: LogOffsetMetadata): Option[LogOffsetMetadata] = {
  //如果新的高水位的值大于LEO,会报错
  if (newHighWatermark.messageOffset > logEndOffset)
    throw new IllegalArgumentException(s"High watermark $newHighWatermark update exceeds current " +
      s"log end offset $logEndOffsetMetadata")

  lock.synchronized {
    // 获取老的高水位值
    val oldHighWatermark = fetchHighWatermarkMetadata

    // Ensure that the high watermark increases monotonically. We also update the high watermark when the new
    // offset metadata is on a newer segment, which occurs whenever the log is rolled to a new segment.
    //只有当新的高水位值大于老的值,因为要维护高水位的单调递增性
    //或者当新的高水位值和老的高水位值相等,但是新的高水位在一个新的日志段上面时才做更新
    if (oldHighWatermark.messageOffset < newHighWatermark.messageOffset ||
      (oldHighWatermark.messageOffset == newHighWatermark.messageOffset && oldHighWatermark.onOlderSegment(newHighWatermark))) {
      updateHighWatermarkMetadata(newHighWatermark)
      Some(oldHighWatermark)// 返回老的高水位值
    } else {
      None
    }
  }
}

这个方法我将这个方法的英文注释贴出来了,这个注释的说明我也写到方法上了,逻辑很清楚,大家看看注释应该能理解。

这两个方法主要的区别是,updateHighWatermark 方法,主要用在 Follower 副本从 Leader 副本获取到消息后更新高水位值。而 maybeIncrementHighWatermark 方法,主要是用来更新 Leader 副本的高水位值。

上面的方法中通过调用fetchHighWatermarkMetadata来获取高水位的值,我们下面看看这个方法:

fetchHighWatermarkMetadata

  private def fetchHighWatermarkMetadata: LogOffsetMetadata = {
    // 读取时确保日志不能被关闭
    checkIfMemoryMappedBufferClosed()

    val offsetMetadata = highWatermarkMetadata
    if (offsetMetadata.messageOffsetOnly) {//没有获得到完整的高水位元数据
      lock.synchronized {
        // 通过读日志文件的方式把完整的高水位元数据信息拉出来
        val fullOffset = convertToOffsetMetadataOrThrow(highWatermark)
        updateHighWatermarkMetadata(fullOffset)
        fullOffset
      }
    } else {
      offsetMetadata
    }
  }

  private def convertToOffsetMetadataOrThrow(offset: Long): LogOffsetMetadata = {
    //通过给的offset,去日志文件中找到相应的日志信息
    val fetchDataInfo = read(offset,
      maxLength = 1,
      isolation = FetchLogEnd,
      minOneMessage = false)
    fetchDataInfo.fetchOffsetMetadata
  }

然后我们提前看一下日志的read方法,是如何根据索引读取数据的:

日志段操作

日志读取操作

read

  def read(startOffset: Long,
           maxLength: Int,
           isolation: FetchIsolation,
           minOneMessage: Boolean): FetchDataInfo = {
    maybeHandleIOException(s"Exception while reading from $topicPartition in dir ${dir.getParent}") {
      trace(s"Reading $maxLength bytes from offset $startOffset of length $size bytes")

      //convertToOffsetMetadataOrThrow传进来是FetchLogEnd,所以这里是false
      val includeAbortedTxns = isolation == FetchTxnCommitted
 
      // 由于没有使用锁,所以使用变量缓存当前的nextOffsetMetadata状态
      val endOffsetMetadata = nextOffsetMetadata
      val endOffset = endOffsetMetadata.messageOffset
      // 到日字段中根据索引寻找最近的日志段
      var segmentEntry = segments.floorEntry(startOffset)

      // return error on attempt to read beyond the log end offset or read below log start offset
      // 这里给出了几种异常场景:
      // 1. 给的日志索引大于最大值;
      // 2. 通过索引找的日志段为空;
      // 3. 给的日志索引小于logStartOffset
      if (startOffset > endOffset || segmentEntry == null || startOffset < logStartOffset)
        throw new OffsetOutOfRangeException(s"Received request for offset $startOffset for partition $topicPartition, " +
          s"but we only have log segments in the range $logStartOffset to $endOffset.")

      //convertToOffsetMetadataOrThrow传进来是FetchLogEnd,所以最大值是endOffsetMetadata
      // 查看一下读取隔离级别设置。
      // 普通消费者能够看到[Log Start Offset, LEO)之间的消息
      // 事务型消费者只能看到[Log Start Offset, Log Stable Offset]之间的消息。Log Stable Offset(LSO)是比LEO值小的位移值,为Kafka事务使用
      // Follower副本消费者能够看到[Log Start Offset,高水位值]之间的消息
      val maxOffsetMetadata = isolation match {
        case FetchLogEnd => endOffsetMetadata
        case FetchHighWatermark => fetchHighWatermarkMetadata
        case FetchTxnCommitted => fetchLastStableOffsetMetadata
      }
      //如果寻找的索引等于maxOffsetMetadata,那么直接返回
      if (startOffset == maxOffsetMetadata.messageOffset) {
        return emptyFetchDataInfo(maxOffsetMetadata, includeAbortedTxns)
      //如果寻找的索引大于maxOffsetMetadata,返回空的消息集合,因为没法读取任何消息
      } else if (startOffset > maxOffsetMetadata.messageOffset) {
        val startOffsetMetadata = convertToOffsetMetadataOrThrow(startOffset)
        return emptyFetchDataInfo(startOffsetMetadata, includeAbortedTxns)
      }
 
      // 开始遍历日志段对象,直到读出东西来或者读到日志末尾
      while (segmentEntry != null) {
        val segment = segmentEntry.getValue
        // 找到日志段中最大的日志位移
        val maxPosition = { 
          if (maxOffsetMetadata.segmentBaseOffset == segment.baseOffset) {
            maxOffsetMetadata.relativePositionInSegment
          } else {
            segment.size
          }
        }
        // 根据位移信息从日志段中读取日志信息
        val fetchInfo = segment.read(startOffset, maxLength, maxPosition, minOneMessage)
        // 如果找不到日志信息,那么去日志段集合中找更大的日志位移的日志段
        if (fetchInfo == null) {
          segmentEntry = segments.higherEntry(segmentEntry.getKey)
        } else {
          return if (includeAbortedTxns)
            addAbortedTransactions(startOffset, segmentEntry, fetchInfo)
          else
            fetchInfo
        }
      }

      //找了所有日志段的位移依然找不到,这可能是因为大于指定的日志位移的消息都被删除了,这种情况返回空
      FetchDataInfo(nextOffsetMetadata, MemoryRecords.EMPTY)
    }
  }

read方法,有四个参数,分别是:

  • startOffset:读取的日志索引位置。
  • maxLength:读取数据量长度。
  • isolation:隔离级别,多用于 Kafka 事务。
  • minOneMessage:是否至少返回一条消息。设想如果消息很大,超过了 maxLength,正常情况下 read 方法永远不会返回任何消息。但如果设置了该参数为 true,read 方法就保证至少能够返回一条消息。

代码中使用了segments,来根据位移查找日志段:

  private val segments: ConcurrentNavigableMap[java.lang.Long, LogSegment] = new ConcurrentSkipListMap[java.lang.Long, LogSegment]

我们下面看看read方法具体做了哪些事:

  1. 由于没有使用锁,所以使用变量缓存当前的nextOffsetMetadata状态,作为最大索引LEO;
  2. 去日志段集合里寻找小于或等于指定索引的日志段;
  3. 校验异常情况:
    1. startOffset是不是超过了LEO;
    2. 是不是日志段集合里没有索引小于startOffset;
    3. startOffset小于Log Start Offset;
  4. 接下来获取一下隔离级别;
  5. 如果寻找的索引等于LEO,那么返回空;
  6. 如果寻找的索引大于LEO,返回空的消息集合,因为没法读取任何消息;
  7. 开始遍历日志段对象,直到读出东西来或者读到日志末尾;
    1. 首先找到日志段中最大的位置;
    2. 根据位移信息从日志段中读取日志信息(这个read方法我们上一篇已经讲解过了);
    3. 如果找不到日志信息,那么读取日志段集合中下一个日志段;
  8. 找了所有日志段的位移依然找不到,这可能是因为大于指定的日志位移的消息都被删除了,这种情况返回空;

我们在上面的read操作中可以看到,使用了segments来查找日志。我们主要看看删除操作

删除日志

删除日志的入口是:deleteOldSegments

  //  如果topic deletion开关是打开的,那么会删去过期的日志段以及超过设置保留日志大小的日志
  // 无论是否开启删除规则,都会删除在log start offset之前的日志段
  def deleteOldSegments(): Int = {
    if (config.delete) {
      deleteRetentionMsBreachedSegments() + deleteRetentionSizeBreachedSegments() + deleteLogStartOffsetBreachedSegments()
    } else {
      deleteLogStartOffsetBreachedSegments()
    }
  }

deleteOldSegments方法会判断是否开启删除规则,如果开启,那么会分别调用:

deleteRetentionMsBreachedSegments删除segment的时间戳超过了设置时间的日志段;

deleteRetentionSizeBreachedSegments删除日志段空间超过设置空间大小的日志段;

deleteLogStartOffsetBreachedSegments删除日志段的baseOffset小于logStartOffset的日志段;

我这里列举一下这三个方法主要是怎么实现的:

  private def deleteRetentionMsBreachedSegments(): Int = {
    if (config.retentionMs < 0) return 0
    val startMs = time.milliseconds
    //调用deleteOldSegments方法,并传入匿名函数,判断当前的segment的时间戳是否超过了设置时间
    deleteOldSegments((segment, _) => startMs - segment.largestTimestamp > config.retentionMs,
      reason = s"retention time ${config.retentionMs}ms breach")
  }
  
  private def deleteRetentionSizeBreachedSegments(): Int = {
    if (config.retentionSize < 0 || size < config.retentionSize) return 0
    var diff = size - config.retentionSize
    //判断日志段空间是否超过设置空间大小
    //shouldDelete函数会将传入的日志段去减diff,直到小于等于零
    def shouldDelete(segment: LogSegment, nextSegmentOpt: Option[LogSegment]) = {
      if (diff - segment.size >= 0) {
        diff -= segment.size
        true
      } else {
        false
      }
    }

    deleteOldSegments(shouldDelete, reason = s"retention size in bytes ${config.retentionSize} breach")
  }
  
  private def deleteLogStartOffsetBreachedSegments(): Int = {
    //shouldDelete函数主要判断日志段的baseOffset是否小于logStartOffset
    def shouldDelete(segment: LogSegment, nextSegmentOpt: Option[LogSegment]) =
      nextSegmentOpt.exists(_.baseOffset <= logStartOffset)

    deleteOldSegments(shouldDelete, reason = s"log start offset $logStartOffset breach")
  }

这种写代码的方式非常的灵活,通过不同方法设置不同的函数来实现代码复用的目的,最后都是通过调用deleteOldSegments来实现删除日志段的目的。

下面我们来看一下deleteOldSegments的操作:

deleteOldSegments

这个deleteOldSegments方法和上面的入口方法传入的参数是不一致的,这个方法传入了一个predicate函数,用于判断哪些日志段是可以被删除的,reason用来说明被删除的原因。

  private def deleteOldSegments(predicate: (LogSegment, Option[LogSegment]) => Boolean, reason: String): Int = {
    //删除任何匹配到predicate规则的日志段
    lock synchronized {
      val deletable = deletableSegments(predicate)
      if (deletable.nonEmpty)
        info(s"Found deletable segments with base offsets [${deletable.map(_.baseOffset).mkString(",")}] due to $reason")
      deleteSegments(deletable)
    }
  }

这个方法调用了两个主要的方法,一个是deletableSegments,用于获取可以被删除的日志段的集合;deleteSegments用于删除日志段。

deletableSegments

  private def deletableSegments(predicate: (LogSegment, Option[LogSegment]) => Boolean): Iterable[LogSegment] = {
    //如果日志段是空的,那么直接返回
    if (segments.isEmpty) {
      Seq.empty
    } else {
      val deletable = ArrayBuffer.empty[LogSegment]
      var segmentEntry = segments.firstEntry
      //如果日志段集合不为空,找到第一个日志段
      while (segmentEntry != null) {
        val segment = segmentEntry.getValue
        //获取下一个日志段
        val nextSegmentEntry = segments.higherEntry(segmentEntry.getKey)
        val (nextSegment, upperBoundOffset, isLastSegmentAndEmpty) = if (nextSegmentEntry != null)
          (nextSegmentEntry.getValue, nextSegmentEntry.getValue.baseOffset, false)
        else
          (null, logEndOffset, segment.size == 0)
        //如果下一个日志段的位移没有大于或等于HW,并且日志段是匹配predicate函数的,下一个日志段也不是空的
        //那么将这个日志段放入可删除集合中,然后遍历下一个日志段
        if (highWatermark >= upperBoundOffset && predicate(segment, Option(nextSegment)) && !isLastSegmentAndEmpty) {
          deletable += segment
          segmentEntry = nextSegmentEntry
        } else {
          segmentEntry = null
        }
      }
      deletable
    }
  }

这个方法逻辑十分清晰,主要做了如下几件事:

  1. 判断日志段集合是否为空,为空那么直接返回空集合;

  2. 如果日志段集合不为空,那么从日志段集合的第一个日志段开始遍历;

  3. 判断当前被遍历日志段是否能够被删除

    1. 日志段的下一个日志段的位移有没有大于或等于HW;
    2. 日志段是否能够通过predicate函数校验;
    3. 日志段是否是最后一个日志段;
  4. 将符合条件的日志段都加入到deletable集合中,并返回。

接下来调用deleteSegments函数:

  private def deleteSegments(deletable: Iterable[LogSegment]): Int = {
    maybeHandleIOException(s"Error while deleting segments for $topicPartition in dir ${dir.getParent}") {
      val numToDelete = deletable.size
      if (numToDelete > 0) {
        // we must always have at least one segment, so if we are going to delete all the segments, create a new one first
        // 我们至少保证要存在一个日志段,如果要删除所有的日志;
        //所以调用roll方法创建一个全新的日志段对象,并且关闭当前写入的日志段对象;
        if (segments.size == numToDelete)
          roll()
        lock synchronized {
          // 确保Log对象没有被关闭
          checkIfMemoryMappedBufferClosed()
          // remove the segments for lookups
          // 删除给定的日志段对象以及底层的物理文件
          removeAndDeleteSegments(deletable, asyncDelete = true)
          // 尝试更新日志的Log Start Offset值
          maybeIncrementLogStartOffset(segments.firstEntry.getValue.baseOffset)
        }
      }
      numToDelete
    }
  }

写日志

写日志的方法主要有两个:

appendAsLeader

  def appendAsLeader(records: MemoryRecords, leaderEpoch: Int, isFromClient: Boolean = true,
                     interBrokerProtocolVersion: ApiVersion = ApiVersion.latestVersion): LogAppendInfo = {
    append(records, isFromClient, interBrokerProtocolVersion, assignOffsets = true, leaderEpoch)
  }

appendAsFollower

  def appendAsFollower(records: MemoryRecords): LogAppendInfo = {
    append(records, isFromClient = false, interBrokerProtocolVersion = ApiVersion.latestVersion, assignOffsets = false, leaderEpoch = -1)
  }

appendAsLeader 是用于写 Leader 副本的,appendAsFollower 是用于 Follower 副本同步的。它们的底层都调用了 append 方法

append

  private def append(records: MemoryRecords, isFromClient: Boolean, interBrokerProtocolVersion: ApiVersion, assignOffsets: Boolean, leaderEpoch: Int): LogAppendInfo = {
    maybeHandleIOException(s"Error while appending records to $topicPartition in dir ${dir.getParent}") {
      // 第1步:分析和验证待写入消息集合,并返回校验结果
      val appendInfo = analyzeAndValidateRecords(records, isFromClient = isFromClient)

      // return if we have no valid messages or if this is a duplicate of the last appended entry
      // 如果压根就不需要写入任何消息,直接返回即可
      if (appendInfo.shallowCount == 0)
        return appendInfo

      // trim any invalid bytes or partial messages before appending it to the on-disk log
      // 第2步:消息格式规整,即删除无效格式消息或无效字节
      var validRecords = trimInvalidBytes(records, appendInfo)

      // they are valid, insert them in the log
      lock synchronized {
        // 确保Log对象未关闭
        checkIfMemoryMappedBufferClosed()
        //需要分配位移值
        if (assignOffsets) {
          // assign offsets to the message set
          // 第3步:使用当前LEO值作为待写入消息集合中第一条消息的位移值,nextOffsetMetadata为LEO值
          val offset = new LongRef(nextOffsetMetadata.messageOffset)
          appendInfo.firstOffset = Some(offset.value)
          val now = time.milliseconds
          val validateAndOffsetAssignResult = try {
            LogValidator.validateMessagesAndAssignOffsets(validRecords,
              topicPartition,
              offset,
              time,
              now,
              appendInfo.sourceCodec,
              appendInfo.targetCodec,
              config.compact,
              config.messageFormatVersion.recordVersion.value,
              config.messageTimestampType,
              config.messageTimestampDifferenceMaxMs,
              leaderEpoch,
              isFromClient,
              interBrokerProtocolVersion,
              brokerTopicStats)
          } catch {
            case e: IOException =>
              throw new KafkaException(s"Error validating messages while appending to log $name", e)
          }
          // 更新校验结果对象类LogAppendInfo
          validRecords = validateAndOffsetAssignResult.validatedRecords
          appendInfo.maxTimestamp = validateAndOffsetAssignResult.maxTimestamp
          appendInfo.offsetOfMaxTimestamp = validateAndOffsetAssignResult.shallowOffsetOfMaxTimestamp
          appendInfo.lastOffset = offset.value - 1
          appendInfo.recordConversionStats = validateAndOffsetAssignResult.recordConversionStats
          if (config.messageTimestampType == TimestampType.LOG_APPEND_TIME)
            appendInfo.logAppendTime = now

          // re-validate message sizes if there's a possibility that they have changed (due to re-compression or message
          // format conversion)
          // 第4步:验证消息,确保消息大小不超限
          if (validateAndOffsetAssignResult.messageSizeMaybeChanged) {
            for (batch <- validRecords.batches.asScala) {
              if (batch.sizeInBytes > config.maxMessageSize) {
                // we record the original message set size instead of the trimmed size
                // to be consistent with pre-compression bytesRejectedRate recording
                brokerTopicStats.topicStats(topicPartition.topic).bytesRejectedRate.mark(records.sizeInBytes)
                brokerTopicStats.allTopicsStats.bytesRejectedRate.mark(records.sizeInBytes)
                throw new RecordTooLargeException(s"Message batch size is ${batch.sizeInBytes} bytes in append to" +
                  s"partition $topicPartition which exceeds the maximum configured size of ${config.maxMessageSize}.")
              }
            }
          }
          // 直接使用给定的位移值,无需自己分配位移值
        } else {
          // we are taking the offsets we are given
          if (!appendInfo.offsetsMonotonic)// 确保消息位移值的单调递增性
            throw new OffsetsOutOfOrderException(s"Out of order offsets found in append to $topicPartition: " +
                                                 records.records.asScala.map(_.offset))

          if (appendInfo.firstOrLastOffsetOfFirstBatch < nextOffsetMetadata.messageOffset) {
            // we may still be able to recover if the log is empty
            // one example: fetching from log start offset on the leader which is not batch aligned,
            // which may happen as a result of AdminClient#deleteRecords()
            val firstOffset = appendInfo.firstOffset match {
              case Some(offset) => offset
              case None => records.batches.asScala.head.baseOffset()
            }

            val firstOrLast = if (appendInfo.firstOffset.isDefined) "First offset" else "Last offset of the first batch"
            throw new UnexpectedAppendOffsetException(
              s"Unexpected offset in append to $topicPartition. $firstOrLast " +
              s"${appendInfo.firstOrLastOffsetOfFirstBatch} is less than the next offset ${nextOffsetMetadata.messageOffset}. " +
              s"First 10 offsets in append: ${records.records.asScala.take(10).map(_.offset)}, last offset in" +
              s" append: ${appendInfo.lastOffset}. Log start offset = $logStartOffset",
              firstOffset, appendInfo.lastOffset)
          }
        }

        // update the epoch cache with the epoch stamped onto the message by the leader
        // 第5步:更新Leader Epoch缓存
        validRecords.batches.asScala.foreach { batch =>
          if (batch.magic >= RecordBatch.MAGIC_VALUE_V2) {
            maybeAssignEpochStartOffset(batch.partitionLeaderEpoch, batch.baseOffset)
          } else {
            // In partial upgrade scenarios, we may get a temporary regression to the message format. In
            // order to ensure the safety of leader election, we clear the epoch cache so that we revert
            // to truncation by high watermark after the next leader election.
            leaderEpochCache.filter(_.nonEmpty).foreach { cache =>
              warn(s"Clearing leader epoch cache after unexpected append with message format v${batch.magic}")
              cache.clearAndFlush()
            }
          }
        }

        // check messages set size may be exceed config.segmentSize
        // 第6步:确保消息大小不超限
        if (validRecords.sizeInBytes > config.segmentSize) {
          throw new RecordBatchTooLargeException(s"Message batch size is ${validRecords.sizeInBytes} bytes in append " +
            s"to partition $topicPartition, which exceeds the maximum configured segment size of ${config.segmentSize}.")
        }

        // maybe roll the log if this segment is full
        // 第7步:执行日志切分。当前日志段剩余容量可能无法容纳新消息集合,因此有必要创建一个新的日志段来保存待写入的所有消息
        //下面情况将会执行日志切分:
        //logSegment 已经满了
        //日志段中的第一个消息的maxTime已经过期
        //index索引满了
        val segment = maybeRoll(validRecords.sizeInBytes, appendInfo)

        val logOffsetMetadata = LogOffsetMetadata(
          messageOffset = appendInfo.firstOrLastOffsetOfFirstBatch,
          segmentBaseOffset = segment.baseOffset,
          relativePositionInSegment = segment.size)

        // now that we have valid records, offsets assigned, and timestamps updated, we need to
        // validate the idempotent/transactional state of the producers and collect some metadata
        // 第8步:验证事务状态
        val (updatedProducers, completedTxns, maybeDuplicate) = analyzeAndValidateProducerState(
          logOffsetMetadata, validRecords, isFromClient)

        maybeDuplicate.foreach { duplicate =>
          appendInfo.firstOffset = Some(duplicate.firstOffset)
          appendInfo.lastOffset = duplicate.lastOffset
          appendInfo.logAppendTime = duplicate.timestamp
          appendInfo.logStartOffset = logStartOffset
          return appendInfo
        }
        // 第9步:执行真正的消息写入操作,主要调用日志段对象的append方法实现
        segment.append(largestOffset = appendInfo.lastOffset,
          largestTimestamp = appendInfo.maxTimestamp,
          shallowOffsetOfMaxTimestamp = appendInfo.offsetOfMaxTimestamp,
          records = validRecords)

        // Increment the log end offset. We do this immediately after the append because a
        // write to the transaction index below may fail and we want to ensure that the offsets
        // of future appends still grow monotonically. The resulting transaction index inconsistency
        // will be cleaned up after the log directory is recovered. Note that the end offset of the
        // ProducerStateManager will not be updated and the last stable offset will not advance
        // if the append to the transaction index fails.
        // 第10步:更新LEO对象,其中,LEO值是消息集合中最后一条消息位移值+1
        // 前面说过,LEO值永远指向下一条不存在的消息
        updateLogEndOffset(appendInfo.lastOffset + 1)

        // update the producer state
        // 第11步:更新事务状态
        for (producerAppendInfo <- updatedProducers.values) {
          producerStateManager.update(producerAppendInfo)
        }

        // update the transaction index with the true last stable offset. The last offset visible
        // to consumers using READ_COMMITTED will be limited by this value and the high watermark.
        for (completedTxn <- completedTxns) {
          val lastStableOffset = producerStateManager.lastStableOffset(completedTxn)
          segment.updateTxnIndex(completedTxn, lastStableOffset)
          producerStateManager.completeTxn(completedTxn)
        }

        // always update the last producer id map offset so that the snapshot reflects the current offset
        // even if there isn't any idempotent data being written
        producerStateManager.updateMapEndOffset(appendInfo.lastOffset + 1)

        // update the first unstable offset (which is used to compute LSO)
        maybeIncrementFirstUnstableOffset()

        trace(s"Appended message set with last offset: ${appendInfo.lastOffset}, " +
          s"first offset: ${appendInfo.firstOffset}, " +
          s"next offset: ${nextOffsetMetadata.messageOffset}, " +
          s"and messages: $validRecords")
        // 是否需要手动落盘。一般情况下我们不需要设置Broker端参数log.flush.interval.messages
        // 落盘操作交由操作系统来完成。但某些情况下,可以设置该参数来确保高可靠性
        if (unflushedMessages >= config.flushInterval)
          flush()
        // 第12步:返回写入结果
        appendInfo
      }
    }
  }

上面代码的主要步骤如下:

Kafka源码解析(二)

我们下面看看analyzeAndValidateRecords是如何进行消息校验的:

analyzeAndValidateRecords

  private def analyzeAndValidateRecords(records: MemoryRecords, isFromClient: Boolean): LogAppendInfo = {
    var shallowMessageCount = 0
    var validBytesCount = 0
    var firstOffset: Option[Long] = None
    var lastOffset = -1L
    var sourceCodec: CompressionCodec = NoCompressionCodec
    var monotonic = true
    var maxTimestamp = RecordBatch.NO_TIMESTAMP
    var offsetOfMaxTimestamp = -1L
    var readFirstMessage = false
    var lastOffsetOfFirstBatch = -1L

    for (batch <- records.batches.asScala) {
      // we only validate V2 and higher to avoid potential compatibility issues with older clients
      // 消息格式Version 2的消息批次,起始位移值必须从0开始
      if (batch.magic >= RecordBatch.MAGIC_VALUE_V2 && isFromClient && batch.baseOffset != 0)
        throw new InvalidRecordException(s"The baseOffset of the record batch in the append to $topicPartition should " +
          s"be 0, but it is ${batch.baseOffset}")

      // update the first offset if on the first message. For magic versions older than 2, we use the last offset
      // to avoid the need to decompress the data (the last offset can be obtained directly from the wrapper message).
      // For magic version 2, we can get the first offset directly from the batch header.
      // When appending to the leader, we will update LogAppendInfo.baseOffset with the correct value. In the follower
      // case, validation will be more lenient.
      // Also indicate whether we have the accurate first offset or not
      if (!readFirstMessage) {
        if (batch.magic >= RecordBatch.MAGIC_VALUE_V2)
          firstOffset = Some(batch.baseOffset) // 更新firstOffset字段
        lastOffsetOfFirstBatch = batch.lastOffset // 更新lastOffsetOfFirstBatch字段
        readFirstMessage = true
      }

      // check that offsets are monotonically increasing
      // 一旦出现当前lastOffset不小于下一个batch的lastOffset,说明上一个batch中有消息的位移值大于后面batch的消息
      // 这违反了位移值单调递增性
      if (lastOffset >= batch.lastOffset)
        monotonic = false

      // update the last offset seen
      // 使用当前batch最后一条消息的位移值去更新lastOffset
      lastOffset = batch.lastOffset

      // Check if the message sizes are valid.
      val batchSize = batch.sizeInBytes
      // 检查消息批次总字节数大小是否超限,即是否大于Broker端参数max.message.bytes值
      if (batchSize > config.maxMessageSize) {
        brokerTopicStats.topicStats(topicPartition.topic).bytesRejectedRate.mark(records.sizeInBytes)
        brokerTopicStats.allTopicsStats.bytesRejectedRate.mark(records.sizeInBytes)
        throw new RecordTooLargeException(s"The record batch size in the append to $topicPartition is $batchSize bytes " +
          s"which exceeds the maximum configured value of ${config.maxMessageSize}.")
      }

      // check the validity of the message by checking CRC
      // 执行消息批次校验,包括格式是否正确以及CRC校验
      if (!batch.isValid) {
        brokerTopicStats.allTopicsStats.invalidMessageCrcRecordsPerSec.mark()
        throw new CorruptRecordException(s"Record is corrupt (stored crc = ${batch.checksum()}) in topic partition $topicPartition.")
      }
      // 更新maxTimestamp字段和offsetOfMaxTimestamp
      if (batch.maxTimestamp > maxTimestamp) {
        maxTimestamp = batch.maxTimestamp
        offsetOfMaxTimestamp = lastOffset
      }
      // 累加消息批次计数器以及有效字节数,更新shallowMessageCount字段
      shallowMessageCount += 1
      validBytesCount += batchSize
      // 从消息批次中获取压缩器类型
      val messageCodec = CompressionCodec.getCompressionCodec(batch.compressionType.id)
      if (messageCodec != NoCompressionCodec)
        sourceCodec = messageCodec
    }

    // Apply broker-side compression if any
    // 获取Broker端设置的压缩器类型,即Broker端参数compression.type值。
    // 该参数默认值是producer,表示sourceCodec用的什么压缩器,targetCodec就用什么
    val targetCodec = BrokerCompressionCodec.getTargetCompressionCodec(config.compressionType, sourceCodec)
    // 最后生成LogAppendInfo对象并返回
    LogAppendInfo(firstOffset, lastOffset, maxTimestamp, offsetOfMaxTimestamp, RecordBatch.NO_TIMESTAMP, logStartOffset,
      RecordConversionStats.EMPTY, sourceCodec, targetCodec, shallowMessageCount, validBytesCount, monotonic, lastOffsetOfFirstBatch)
  }

本文分享 CNBlog - luozhiyun。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

点赞
收藏
评论区
推荐文章
blmius blmius
3年前
MySQL:[Err] 1292 - Incorrect datetime value: ‘0000-00-00 00:00:00‘ for column ‘CREATE_TIME‘ at row 1
文章目录问题用navicat导入数据时,报错:原因这是因为当前的MySQL不支持datetime为0的情况。解决修改sql\mode:sql\mode:SQLMode定义了MySQL应支持的SQL语法、数据校验等,这样可以更容易地在不同的环境中使用MySQL。全局s
皕杰报表之UUID
​在我们用皕杰报表工具设计填报报表时,如何在新增行里自动增加id呢?能新增整数排序id吗?目前可以在新增行里自动增加id,但只能用uuid函数增加UUID编码,不能新增整数排序id。uuid函数说明:获取一个UUID,可以在填报表中用来创建数据ID语法:uuid()或uuid(sep)参数说明:sep布尔值,生成的uuid中是否包含分隔符'',缺省为
待兔 待兔
5个月前
手写Java HashMap源码
HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程HashMap的使用教程22
Jacquelyn38 Jacquelyn38
3年前
2020年前端实用代码段,为你的工作保驾护航
有空的时候,自己总结了几个代码段,在开发中也经常使用,谢谢。1、使用解构获取json数据let jsonData  id: 1,status: "OK",data: 'a', 'b';let  id, status, data: number   jsonData;console.log(id, status, number )
Stella981 Stella981
3年前
SpringBoot使用RedisTemplate操作Redis时,key值出现 -xac-xed-x00-x05t-x00-tb
原因分析原因与RedisTemplate源码中的默认序列化方式有关defaultSerializernewJdkSerializationRedisSerializer(classLoader!null?classLoader:this.getClass().getClassLoader()
Wesley13 Wesley13
3年前
mysql设置时区
mysql设置时区mysql\_query("SETtime\_zone'8:00'")ordie('时区设置失败,请联系管理员!');中国在东8区所以加8方法二:selectcount(user\_id)asdevice,CONVERT\_TZ(FROM\_UNIXTIME(reg\_time),'08:00','0
Stella981 Stella981
3年前
Spring Boot日志集成
!(https://oscimg.oschina.net/oscnet/1bde8e8d00e848be8b84e9d1d44c9e5c.jpg)SpringBoot日志框架SpringBoot支持JavaUtilLogging,Log4j2,Lockback作为日志框架,如果你使用star
Easter79 Easter79
3年前
SpringBoot使用RedisTemplate操作Redis时,key值出现 -xac-xed-x00-x05t-x00-tb
原因分析原因与RedisTemplate源码中的默认序列化方式有关defaultSerializernewJdkSerializationRedisSerializer(classLoader!null?classLoader:this.getClass().getClassLoader()
Wesley13 Wesley13
3年前
MySQL部分从库上面因为大量的临时表tmp_table造成慢查询
背景描述Time:20190124T00:08:14.70572408:00User@Host:@Id:Schema:sentrymetaLast_errno:0Killed:0Query_time:0.315758Lock_
Python进阶者 Python进阶者
11个月前
Excel中这日期老是出来00:00:00,怎么用Pandas把这个去除
大家好,我是皮皮。一、前言前几天在Python白银交流群【上海新年人】问了一个Pandas数据筛选的问题。问题如下:这日期老是出来00:00:00,怎么把这个去除。二、实现过程后来【论草莓如何成为冻干莓】给了一个思路和代码如下:pd.toexcel之前把这