1、利用scala语言开发spark的worcount程序(本地运行)
package com.zy.spark
import org.apache.spark.rdd.RDD
import org.apache.spark.{SparkConf, SparkContext}
//todo:利用scala语言来实现spark的wordcount程序
object WordCount {
def main(args: Array[String]): Unit = {
//1、创建SparkConf对象,设置appName和master local[2]表示本地采用2个线程去运行任务
val sparkConf: SparkConf = new SparkConf().setAppName("WordCount").setMaster("local[2]")
//2、创建SparkContext 该对象是所有spark程序的执行入口,它会创建DAGScheduler和TaskScheduler
val sc = new SparkContext(sparkConf)
//设置日志输出级别
sc.setLogLevel("warn")
//3、读取数据文件
val data: RDD[String] = sc.textFile("D:\\words.txt")
//4、切分每一行获取所有单词
val words: RDD[String] = data.flatMap(_.split(" "))
//5、每个单词计为1
val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
//6、相同单词出现的所有的1累加
val result: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
//按照单词出现的次数降序排列
val sortRDD: RDD[(String, Int)] = result.sortBy(x => x._2, false)
//7、收集数据,打印输出
val finalResult: Array[(String, Int)] = sortRDD.collect()
finalResult.foreach(println)
//8、关闭sc
sc.stop()
}
}
2、利用scala语言开发spark的wordcount程序(集群运行)
package com.zy.spark
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.rdd.RDD
//todo:利用scala语言开发spark的wordcount程序(集群运行)
object WordCount_Online {
def main(args: Array[String]): Unit = {
//1、创建SparkConf对象,设置appName
val sparkConf: SparkConf = new SparkConf().setAppName("WordCount_Online")
//2、创建SparkContext 该对象是所有spark程序的执行入口,它会创建DAGScheduler和TaskScheduler
val sc = new SparkContext(sparkConf)
//设置日志输出级别
sc.setLogLevel("warn")
//3、读取数据文件 args(0)为文件地址参数
val data: RDD[String] = sc.textFile(args(0))
//4、切分每一行获取所有单词
val words: RDD[String] = data.flatMap(_.split(" "))
//5、每个单词计为1
val wordAndOne: RDD[(String, Int)] = words.map((_, 1))
//6、相同单词出现的所有的1累加
val result: RDD[(String, Int)] = wordAndOne.reduceByKey(_ + _)
//7、把结果数据保存到hdfs上 args(1)是保存到hdfs的目录参数
result.saveAsTextFile(args(1))
//8、关闭sc
sc.stop()
}
}
最后打成jar包 到集群上执行
spark-submit --master spark://node1:7077 --class cn.itcast.spark.WordCount_Online --executor-memory 1g --total-executor-cores 2 original-spark_xxx-1.0-SNAPSHOT.jar /words.txt /out
3、利用java语言开发spark的wordcount程序(本地运行)
package com.zy.spark;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.FlatMapFunction;
import org.apache.spark.api.java.function.Function2;
import org.apache.spark.api.java.function.PairFunction;
import scala.Tuple2;
import java.util.Arrays;
import java.util.Iterator;
import java.util.List;
//todo:利用java语言开发spark的wordcount程序(本地运行)
public class WordCount_Java {
public static void main(String[] args) {
//1、创建SparkConf对象
SparkConf sparkConf = new SparkConf().setAppName("WordCount_Java").setMaster("local[2]");
//2、创建JavaSparkContext对象
JavaSparkContext jsc = new JavaSparkContext(sparkConf);
//3、读取数据文件
JavaRDD<String> data = jsc.textFile("D:\\words.txt");
//4、切分每一行获取所有的单词
JavaRDD<String> words = data.flatMap(new FlatMapFunction<String, String>() {
public Iterator<String> call(String line) throws Exception {
String[] words = line.split(" ");
return Arrays.asList(words).iterator();
}
});
//5、每个单词计为1
JavaPairRDD<String, Integer> wordAndOne = words.mapToPair(new PairFunction<String, String, Integer>() {
public Tuple2<String, Integer> call(String word) throws Exception {
return new Tuple2<String, Integer>(word, 1);
}
});
//6、相同单词出现1累加
JavaPairRDD<String, Integer> result = wordAndOne.reduceByKey(new Function2<Integer, Integer, Integer>() {
public Integer call(Integer v1, Integer v2) throws Exception {
return v1 + v2;
}
});
//按照单词出现的次数降序排列 (单词,次数)------>(次数,单词).sortByKey------->(单词,次数)
JavaPairRDD<Integer, String> reverseRDD = result.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
public Tuple2<Integer, String> call(Tuple2<String, Integer> t) throws Exception {
return new Tuple2<Integer, String>(t._2, t._1);
}
});
JavaPairRDD<String, Integer> sortedRDD = reverseRDD.sortByKey(false).mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {
public Tuple2<String, Integer> call(Tuple2<Integer, String> t) throws Exception {
return new Tuple2<String, Integer>(t._2, t._1);
}
});
//7、收集数据打印输出
List<Tuple2<String, Integer>> finalResult = sortedRDD.collect();
for (Tuple2<String, Integer> tuple : finalResult) {
System.out.println("单词:" + tuple._1 + " 次数:" + tuple._2);
}
//8、关闭jsc
jsc.stop();
}
}