练习内容:
1.创建一个类,实现优先级队列功能。
2.使用优先级队列求解IPO问题。
IPO问题:
输入:参数1:正数数组costs;参数2:正数数组profits;参数3:正数k;参数4,正数m
costs[i]表示i号项目的花费;
profits[i]表示i号项目在扣除花费之后还能挣到的钱;
k表示你不能并行,只能串行的最多做k个项目;
m表示你最初的资金;
说明:你每做完一个项目,马上获得的收益,可以支持你去做下一个项目。
输出:你最后获得的最大钱数。
1.实现优先级队列
1 __author__ = 'Orcsir'
2
3
4 class PriorityQueue:
5 def __init__(self, comparator=lambda x, y: x > y):
6 self._lst = []
7 self.comparator = comparator
8
9 def __heap_insert(self, index):
10 array = self._lst
11 while index != 0 and self.comparator(array[index], array[(index - 1) >> 1]):
12 array[index], array[(index - 1) >> 1] = array[(index - 1) >> 1], array[index]
13 index = (index - 1) >> 1
14
15 def __heap_ify(self, index, size):
16 array = self._lst
17 left = 2 * index + 1
18 while left < size:
19 # 选出左右孩子中的最值
20 largest = left
21 right = left + 1
22 if right < size:
23 largest = left if self.comparator(array[left], array[right]) else right
24
25 if self.comparator(array[index], array[largest]):
26 break
27
28 array[index], array[largest] = array[largest], array[index]
29 index = largest
30 left = 2 * index + 1
31
32 def is_empty(self):
33 return True if len(self._lst) == 0 else False
34
35 def add(self, obj):
36 self._lst.append(obj)
37 self.__heap_insert(len(self._lst) - 1)
38
39 def pop(self):
40 self._lst[0], self._lst[-1] = self._lst[-1], self._lst[0]
41 obj = self._lst.pop()
42 self.__heap_ify(0, len(self._lst))
43 return obj
44
45 def peek(self):
46 return self._lst[0]
47
48 poll = pop
2.创建数据类,用于描述每一个项目
1 class Project:
2 __slots__ = ("cost", "profit")
3
4 def __init__(self, cost, profit):
5 self.cost = cost
6 self.profit = profit
3.求解IPO问题。策略:建立两个优先级队列:最小花费堆,最大收益堆。根据资金持续解锁花费堆,并向收益堆中发货
1 def max_heap_comparator(obj1, obj2):
2 return obj1.profit > obj2.profit # 大根堆
3
4
5 def min_heap_comparator(obj1, obj2):
6 return obj1.cost < obj2.cost # 小根堆
7
8
9 def findMaximizedCapital(costs: list, profits: list, k: int, m: int) -> int:
10 min_cost_heap = PriorityQueue(min_heap_comparator)
11 max_profit_heap = PriorityQueue(max_heap_comparator)
12
13 for cost, profit in zip(costs, profits):
14 min_cost_heap.add(Project(cost, profit))
15
16 for i in range(0, k):
17 while not min_cost_heap.is_empty() and min_cost_heap.peek().cost <= m:
18 obj = min_cost_heap.pop()
19 max_profit_heap.add(obj)
20
21 if max_profit_heap.is_empty():
22 break
23 m += max_profit_heap.poll().profit
24 return m
4. 简单测试代码
1 if __name__ == '__main__':
2 costs = [2, 10, 14, 1]
3 profits = [5, 20, 8, 10]
4 k = 4
5 m = 15
6 ret = 0
7 ret = findMaximizedCapital(costs, profits, k, m)
8 print(ret)