写在前面: 我们没有讲UART驱动,不过我们认为,只要系统学习了第2期,应该具备分析UART驱动的能力,小编做答疑几年以来,陆陆续续有不少人问到UART驱动怎么写,所以今天就分享一篇深度长文(17000字,阅读时间43分钟),作者是我们的答疑助手lizuobin,涉及很多数据结构,为了看懂本文,特意打开source insight 跟踪了代码,你也应该这样,如果你的代码不一样,那或许linux版本不一样。
作者:lizuobin 原文(有些许修正): https://blog.csdn.net/lizuobin2/article/details/51773305
本文参考了大量牛人的博客,对大神的分享表示由衷的感谢。 主要参考: Linux TTY驱动--Uart_driver底层: http://blog.csdn.net/sharecode/article/details/9196591 Linux TTY驱动--Serial Core层 : http://blog.csdn.net/sharecode/article/details/9197567
前面学习过了 i2c、spi,这俩都是基于设备总线驱动模型,分析起来相对比较简单,今天打算迎难而上学习一下 Uart 驱动,因为它涉及了tty 、线路规程,确实有些难度,幸好有万能的互联网让我可以学习大神们的博客。一天下来总算有些收获,下面总结一下(主要是框架)。
整个uart 框架大概如上图所示,简单来分的话可以说成两层,一层是下层我们的串口驱动层,它直接与硬件接触,我们需要填充一个 struct uart_ops 的结构体,另一层是上层 tty 层,包括 tty 核心以及线路规程,它们各自都有一个 Ops 结构,用户空间通过 tty 注册的字符设备节点来访问,这么说来如上图所示涉及到了4个 ops 结构了,层层跳转。下面,就来分析分析它们的层次结构。
在 s3c2440平台,它是这样来注册串口驱动的:分配一个struct uart_driver 简单填充,并调用uart_register_driver 注册到内核中去。
static struct uart_driver s3c24xx_uart_drv = {
.owner = THIS_MODULE,
.dev_name = "s3c2410_serial",
.nr = CONFIG_SERIAL_SAMSUNG_UARTS,
.cons = S3C24XX_SERIAL_CONSOLE,
.driver_name = S3C24XX_SERIAL_NAME,
.major = S3C24XX_SERIAL_MAJOR,
.minor = S3C24XX_SERIAL_MINOR,
};
static int __init s3c24xx_serial_modinit(void)
{
int ret;
ret = uart_register_driver(&s3c24xx_uart_drv);
if (ret < 0) {
printk(KERN_ERR "failed to register UART driver\n");
return -1;
}
return 0;
}
uart_driver 中,我们只是填充了一些名字、设备号等信息,这些都是不涉及底层硬件访问的,到底怎么回事呢?来看一下完整的 uart_driver 结构或许就明白了。
struct uart_driver {
struct module *owner; /* 拥有该uart_driver的模块,一般为THIS_MODULE */
const char *driver_name; /* 串口驱动名,串口设备文件名以驱动名为基础 */
const char *dev_name; /* 串口设备名 */
int major; /* 主设备号 */
int minor; /* 次设备号 */
int nr; /* 该uart_driver支持的串口个数(最大) */
struct console *cons; /* 其对应的console.若该uart_driver支持serial console,否则为NULL */
/* 下面这俩,它们应该被初始化为NULL */
struct uart_state *state; <span style="white-space:pre"> </span>/* 下层,串口驱动层 */
struct tty_driver *tty_driver; /* tty相关 */
};
在我们上边填充的结构体中,有两个成员未被赋值,对于tty_driver 代表的是上层,它会在 uart_register_driver中的过程中赋值,而uart_state 则代表下层,uart_state 也会在uart_register_driver的过程中分配空间,但是它里面真正设置硬件相关的东西是 uart_state->uart_port ,这个uart_port 是需要我们从其它地方调用 uart_add_one_port 来添加的。
1、下层(串口驱动层)
首先,我们需要认识这几个结构体
struct uart_state {
struct tty_port port;
int pm_state;
struct circ_buf xmit;
struct tasklet_struct tlet;
struct uart_port *uart_port; // 对应于一个串口设备
};
在注册 driver 时,会根据 uart_driver->nr 来申请 nr 个 uart_state 空间,用来存放驱动所支持的串口(端口)的物理信息。
struct uart_port {
spinlock_t lock; /* port lock */
unsigned long iobase; /* io端口基地址(物理) */
unsigned char __iomem *membase; /* io内存基地址(虚拟) */
unsigned int (*serial_in)(struct uart_port *, int);
void (*serial_out)(struct uart_port *, int, int);
unsigned int irq; /* 中断号 */
unsigned long irqflags; /* 中断标志 */
unsigned int uartclk; /* 串口时钟 */
unsigned int fifosize; /* 串口缓冲区大小 */
unsigned char x_char; /* xon/xoff char */
unsigned char regshift; /* 寄存器位移 */
unsigned char iotype; /* IO访问方式 */
unsigned char unused1;
unsigned int read_status_mask; /* 关心 Rx error status */
unsigned int ignore_status_mask; /* 忽略 Rx error status */
struct uart_state *state; /* pointer to parent state */
struct uart_icount icount; /* 串口信息计数器 */
struct console *cons; /* struct console, if any */
#if defined(CONFIG_SERIAL_CORE_CONSOLE) || defined(SUPPORT_SYSRQ)
unsigned long sysrq; /* sysrq timeout */
#endif
upf_t flags;
unsigned int mctrl; /* 当前的Moden 设置 */
unsigned int timeout; /* character-based timeout */
unsigned int type; /* 端口类型 */
const struct uart_ops *ops; /* 串口端口操作函数 */
unsigned int custom_divisor;
unsigned int line; /* 端口索引 */
resource_size_t mapbase; /* io内存物理基地址 */
struct device *dev; /* 父设备 */
unsigned char hub6; /* this should be in the 8250 driver */
unsigned char suspended;
unsigned char unused[2];
void *private_data; /* generic platform data pointer */
};
这个结构体,是需要我们自己来填充的,比如s3c2440 有3个串口,那么就需要填充3个 uart_port ,并且通过 uart_add_one_port 添加到 uart_driver->uart_state->uart_port 中去。当然 uart_driver 有多个 uart_state ,每个 uart_state 有一个 uart_port 。
在 uart_port 里还有一个非常重要的成员 struct uart_ops *ops ,这个也是需要我们自己来实现的,一般芯片厂家都写好了或者只需要稍作修改。
struct uart_ops {
unsigned int (*tx_empty)(struct uart_port *); /* 串口的Tx FIFO缓存是否为空 */
void (*set_mctrl)(struct uart_port *, unsigned int mctrl); /* 设置串口modem控制 */
unsigned int (*get_mctrl)(struct uart_port *); /* 获取串口modem控制 */
void (*stop_tx)(struct uart_port *); /* 禁止串口发送数据 */
void (*start_tx)(struct uart_port *); /* 使能串口发送数据 */
void (*send_xchar)(struct uart_port *, char ch); /* 发送xChar */
void (*stop_rx)(struct uart_port *); /* 禁止串口接收数据 */
void (*enable_ms)(struct uart_port *); /* 使能modem的状态信号 */
void (*break_ctl)(struct uart_port *, int ctl); /* 设置break信号 */
int (*startup)(struct uart_port *); /* 启动串口,应用程序打开串口设备文件时,该函数会被调用 */
void (*shutdown)(struct uart_port *);/* 关闭串口,应用程序关闭串口设备文件时,该函数会被调用 */
void (*flush_buffer)(struct uart_port *);
void (*set_termios)(struct uart_port *, struct ktermios *new,
struct ktermios *old); /* 设置串口参数 */
void (*set_ldisc)(struct uart_port *);/* 设置线路规程 */
void (*pm)(struct uart_port *, unsigned int state,
unsigned int oldstate); /* 串口电源管理 */
int (*set_wake)(struct uart_port *, unsigned int state);
/*
* Return a string describing the type of the port
*/
const char *(*type)(struct uart_port *);
/*
* Release IO and memory resources used by the port.
* This includes iounmap if necessary.
*/
void (*release_port)(struct uart_port *);
/*
* Request IO and memory resources used by the port.
* This includes iomapping the port if necessary.
*/
int (*request_port)(struct uart_port *); /* 申请必要的IO端口/IO内存资源,必要时还可以重新映射串口端口 */
void (*config_port)(struct uart_port *, int); /* 执行串口所需的自动配置 */
int (*verify_port)(struct uart_port *, struct serial_struct *); /* 核实新串口的信息 */
int (*ioctl)(struct uart_port *, unsigned int, unsigned long);
#ifdef CONFIG_CONSOLE_POLL
void (*poll_put_char)(struct uart_port *, unsigned char);
int (*poll_get_char)(struct uart_port *);
#endif
};
实在是太复杂了。但这一层就跟裸机程序一样,用来操作硬件寄存器,只不过内核把“格式”给我们规定死了。
2、上层(tty 核心层)
tty 层要从 uart_register_driver来看起了,因为tty_driver是在注册过程中构建的,我们也顺便了解注册过程。
int uart_register_driver(struct uart_driver *drv)
{
struct tty_driver *normal = NULL;
int i, retval;
/* 根据driver支持的最大设备数,申请n个 uart_state 空间,每一个 uart_state 都有一个uart_port */
drv->state = kzalloc(sizeof(struct uart_state) * drv->nr, GFP_KERNEL);
/* tty层:分配一个 tty_driver ,并将drv->tty_driver 指向它 */
normal = alloc_tty_driver(drv->nr);
drv->tty_driver = normal;
/* 对 tty_driver 进行设置 */
normal->owner = drv->owner;
normal->driver_name = drv->driver_name;
normal->name = drv->dev_name;
normal->major = drv->major;
normal->minor_start = drv->minor;
normal->type = TTY_DRIVER_TYPE_SERIAL;
normal->subtype = SERIAL_TYPE_NORMAL;
normal->init_termios = tty_std_termios;
normal->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL | CLOCAL;
normal->init_termios.c_ispeed = normal->init_termios.c_ospeed = 9600;
normal->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
normal->driver_state = drv;
tty_set_operations(normal, &uart_ops);
/*
* Initialise the UART state(s).
*/
for (i = 0; i < drv->nr; i++) {
struct uart_state *state = drv->state + i;
struct tty_port *port = &state->port; /* driver->state->tty_port */
tty_port_init(port);
port->close_delay = 500; /* .5 seconds */
port->closing_wait = 30000; /* 30 seconds */
/* 初始化 tasklet */
tasklet_init(&state->tlet, uart_tasklet_action,
(unsigned long)state);
}
/* tty层:注册 driver->tty_driver */
retval = tty_register_driver(normal);
}
注册过程干了哪些事: 1、根据driver支持的最大设备数,申请n个 uart_state 空间,每一个 uart_state 都有一个 uart_port 。
2、分配一个 tty_driver ,并将drv->tty_driver 指向它。
3、对 tty_driver 进行设置,其中包括默认波特率、校验方式等,还有一个重要的 Ops ,uart_ops ,它是tty核心与我们串口驱动通信的接口。
4、初始化每一个 uart_state 的 tasklet 。
5、注册 tty_driver 。
注册 uart_driver 实际上是注册 tty_driver,因此与用户空间打交道的工作完全交给了 tty_driver ,而且这一部分都是内核实现好的,我们不需要修改,了解一下工作原理即可。
static const struct tty_operations uart_ops = {
.open = uart_open,
.close = uart_close,
.write = uart_write,
.put_char = uart_put_char, // 单字节写函数
.flush_chars = uart_flush_chars, // 刷新数据到硬件函数
.write_room = uart_write_room, // 指示多少缓冲空闲的函数
.chars_in_buffer= uart_chars_in_buffer, // 只是多少缓冲满的函数
.flush_buffer = uart_flush_buffer, // 刷新数据到硬件
.ioctl = uart_ioctl,
.throttle = uart_throttle,
.unthrottle = uart_unthrottle,
.send_xchar = uart_send_xchar,
.set_termios = uart_set_termios, // 当termios设置被改变时又tty核心调用
.set_ldisc = uart_set_ldisc, // 设置线路规程函数
.stop = uart_stop,
.start = uart_start,
.hangup = uart_hangup, // 挂起函数,当驱动挂起tty设备时调用
.break_ctl = uart_break_ctl, // 线路中断控制函数
.wait_until_sent= uart_wait_until_sent,
#ifdef CONFIG_PROC_FS
.proc_fops = &uart_proc_fops,
#endif
.tiocmget = uart_tiocmget, // 获得当前tty的线路规程的设置
.tiocmset = uart_tiocmset, // 设置当前tty线路规程的设置
#ifdef CONFIG_CONSOLE_POLL
.poll_init = uart_poll_init,
.poll_get_char = uart_poll_get_char,
.poll_put_char = uart_poll_put_char,
#endif
};
这个是 tty 核心的 Ops ,简单看看,等后面分析调用关系时,在来细看,下面来看 tty_driver 的注册。
int tty_register_driver(struct tty_driver *driver)
{
int error;
int i;
dev_t dev;
void **p = NULL;
if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
}
/* 如果没有主设备号则申请 */
if (!driver->major) {
error = alloc_chrdev_region(&dev, driver->minor_start,
driver->num, driver->name);
} else {
dev = MKDEV(driver->major, driver->minor_start);
error = register_chrdev_region(dev, driver->num, driver->name);
}
if (p) { /* 为线路规程和termios分配空间 */
driver->ttys = (struct tty_struct **)p;
driver->termios = (struct ktermios **)(p + driver->num);
} else {
driver->ttys = NULL;
driver->termios = NULL;
}
/* 创建字符设备,使用 tty_fops */
cdev_init(&driver->cdev, &tty_fops);
driver->cdev.owner = driver->owner;
error = cdev_add(&driver->cdev, dev, driver->num);
mutex_lock(&tty_mutex);
/* 将该 driver->tty_drivers 添加到全局链表 tty_drivers */
list_add(&driver->tty_drivers, &tty_drivers);
mutex_unlock(&tty_mutex);
if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
for (i = 0; i < driver->num; i++)
tty_register_device(driver, i, NULL);
}
/* proc 文件系统注册driver */
proc_tty_register_driver(driver);
driver->flags |= TTY_DRIVER_INSTALLED;
return 0;
}
tty_driver 注册过程干了哪些事: 1、为线路规程和termios分配空间,并使 tty_driver 相应的成员指向它们。
2、注册字符设备,名字是 uart_driver->name 我们这里是“ttySAC”,文件操作函数集是 tty_fops。
3、将该 uart_driver->tty_drivers 添加到全局链表 tty_drivers 。
4、向 proc 文件系统添加 driver ,这个暂时不了解。
至此,文章起初的结构图中的4个ops已经出现了3个,另一个关于线路规程的在哪?继续往下看。
3、调用关系分析
tty_driver 不是注册了一个字符设备么,那我们就以它的 tty_fops 入手,以 open、read、write 为例,看看用户空间是如何访问到最底层的硬件操作函数的。
3.1 tty_open
static int tty_open(struct inode *inode, struct file *filp)
{
int ret;
lock_kernel();
ret = __tty_open(inode, filp);
unlock_kernel();
return ret;
}
为了方便分析,我把看不懂的代码都删掉了。
static int __tty_open(struct inode *inode, struct file *filp)
{
struct tty_struct *tty = NULL;
int noctty, retval;
struct tty_driver *driver;
int index;
dev_t device = inode->i_rdev;
unsigned saved_flags = filp->f_flags;
...
//在全局tty_drivers链表中获取Core注册的tty_driver
driver = get_tty_driver(device, &index);
tty = tty_init_dev(driver, index, 0); // tty->ops = driver->ops;
filp->private_data = tty;
if (tty->ops->open)
/* 调用tty_driver->tty_foperation->open */
retval = tty->ops->open(tty, filp);
return 0;
}
从 tty_drivers 全局链表获取到前边我们注册进去的 tty_driver ,然后分配设置一个 struct tty_struct 的东西,最后调用 tty_struct->ops->open 函数,其实 tty_struct->ops == tty_driver->ops 。
struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx, int first_ok)
{
struct tty_struct *tty;
int retval;
/* 分配一个 tty_struct */
tty = alloc_tty_struct();
/* 初始化 tty ,设置线路规程 Ops 等 */
initialize_tty_struct(tty, driver, idx);
//tty_ldisc_open(tty, ld)-> return ld->ops->open(tty) -> n_tty_open
retval = tty_ldisc_setup(tty, tty->link);
return tty;
}
void initialize_tty_struct(struct tty_struct *tty,
struct tty_driver *driver, int idx)
{
memset(tty, 0, sizeof(struct tty_struct));
/* 设置线路规程为 N_TTY */
tty_ldisc_init(tty);//struct tty_ldisc *ld = tty_ldisc_get(N_TTY);tty_ldisc_assign(tty, ld);
...
tty_buffer_init(tty);
tty->driver = driver;
/* 初始化等待队列头 */
init_waitqueue_head(&tty->write_wait);
init_waitqueue_head(&tty->read_wait);
/* 将driver->ops 拷贝到 tty->ops */
tty->ops = driver->ops;
tty->index = idx;
}
void tty_buffer_init(struct tty_struct *tty)
{
spin_lock_init(&tty->buf.lock);
tty->buf.head = NULL;
tty->buf.tail = NULL;
tty->buf.free = NULL;
tty->buf.memory_used = 0;
/* 初始化延时工作队列 */
INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
}
整个 tty_open 的工作: 1、获取 tty_driver
2、根据 tty_driver 初始化一个 tty_struct
2.1 设置 tty_struct 的线路规程为 N_TTY (不同类型的线路规程有不同的 ops)
2.2 初始化一个延时工作队列,唤醒时调用flush_to_ldisc ,读函数时我们需要分析它。
2.3 初始化 tty_struct 里的两个等待队列头。
2.4 设置 tty_struct->ops == tty_driver->ops 。
3、在 tty_ldisc_setup 函数中调用到线路规程的open函数,对于 N_TTY 来说是 n_tty_open 。
4、如果 tty_struct->ops 也就是 tty_driver->ops 定义了 open 函数则调用,显然是有的 uart_open 。
对于 n_tty_open ,它应该是对线路规程如何“格式化数据”进行设置,太复杂了,忽略掉吧,跟我们没多大关系。对于 uart_open 还是有必要贴下代码。
static int uart_open(struct tty_struct *tty, struct file *filp)
{
struct uart_driver *drv = (struct uart_driver *)tty->driver->driver_state;
struct uart_state *state;
struct tty_port *port;
int retval, line = tty->index;
state = uart_get(drv, line);
port = &state->port;
tty->driver_data = state;
state->uart_port->state = state;
/* uport->ops->startup(uport) 调用到最底层的ops里的startup 函数*/
retval = uart_startup(state, 0);
}
根据 tty_struct 获取到 uart_driver ,再由 uart_driver 获取到里面 的uart_state->uart_port->ops->startup 并调用它。至此,open函数分析完毕,它不是简单的 “打开”,还有大量的初始化工作,最终调用到最底层的 startup 函数。
3.2 tty_write
static ssize_t tty_write(struct file *file, const char __user *buf, size_t count, loff_t *ppos)
{
struct tty_struct *tty;
struct inode *inode = file->f_path.dentry->d_inode;
ssize_t ret;
struct tty_ldisc *ld;
tty = (struct tty_struct *)file->private_data;
ld = tty_ldisc_ref_wait(tty);
if (!ld->ops->write)
ret = -EIO;
else
/* 调用 线路规程 n_tty_write 函数 */
ret = do_tty_write(ld->ops->write, tty, file, buf, count);
tty_ldisc_deref(ld);
return ret;
}
static ssize_t n_tty_write(struct tty_struct *tty, struct file *file,
const unsigned char *buf, size_t nr)
{
const unsigned char *b = buf;
DECLARE_WAITQUEUE(wait, current);
int c;
ssize_t retval = 0;
// 将当前进程添加到等待队列
add_wait_queue(&tty->write_wait, &wait);
while (1) {
// 设置当前进程为可中断的
set_current_state(TASK_INTERRUPTIBLE);
if (signal_pending(current)) {
retval = -ERESTARTSYS;
break;
}
if (tty_hung_up_p(file) || (tty->link && !tty->link->count)) {
retval = -EIO;
break;
}
/* 自行定义了输出方式 */
if (O_OPOST(tty) && !(test_bit(TTY_HW_COOK_OUT, &tty->flags))) {
....
} else {
while (nr > 0) {
/* 调用到 uart_write */
c = tty->ops->write(tty, b, nr);
if (c < 0) {
retval = c;
goto break_out;
}
if (!c)
break;
b += c;
nr -= c;
}
}
if (!nr)
break;
if (file->f_flags & O_NONBLOCK) {
retval = -EAGAIN;
break;
}
// 进程调度 开始休眠
schedule();
}
}
n_tty_write 调用 tty->ops->write 也就是 uart_write。
static int uart_write(struct tty_struct *tty, const unsigned char *buf, int count)
{
uart_start(tty);
return ret;
}
static void uart_start(struct tty_struct *tty)
{
__uart_start(tty);
}
static void __uart_start(struct tty_struct *tty)
{
struct uart_state *state = tty->driver_data;
struct uart_port *port = state->uart_port;
if (!uart_circ_empty(&state->xmit) && state->xmit.buf &&
!tty->stopped && !tty->hw_stopped)
/* 调用到最底层的 start_tx */
port->ops->start_tx(port);
}
uart_write 又调用到了最底层的 uart_port->ops->start_tx 函数。 猜测一下,大概“写”的思路:
1、将当前进程加入到等待队列
2、设置当前进程为可打断的
3、层层调用最终调用到底层的 start_tx 函数,将要发送的数据存入 DATA 寄存器,由硬件自动发送。
4、进程调度,当前进程进入休眠。
5、硬件发送完成,进入中断处理函数,唤醒对面队列。
当然这只是我自己的猜测,到底是不是这样,具体分析底层操作函数的时候应该会明白。
3.3 tty_read
static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
loff_t *ppos)
{
int i;
struct tty_struct *tty;
struct inode *inode;
struct tty_ldisc *ld;
tty = (struct tty_struct *)file->private_data;
inode = file->f_path.dentry->d_inode;
ld = tty_ldisc_ref_wait(tty);
/* 调用线路规程 n_tty_read */
if (ld->ops->read)
i = (ld->ops->read)(tty, file, buf, count);
else
i = -EIO;
tty_ldisc_deref(ld);
if (i > 0)
inode->i_atime = current_fs_time(inode->i_sb);
return i;
}
调用线路规程的 read 函数,对于 N_TTY 来说是 n_tty_read (删掉了一堆看不懂的代码,还是有很多)
static ssize_t n_tty_read(struct tty_struct *tty, struct file *file,
unsigned char __user *buf, size_t nr)
{
unsigned char __user *b = buf;
DECLARE_WAITQUEUE(wait, current);
int c;
int minimum, time;
ssize_t retval = 0;
ssize_t size;
long timeout;
unsigned long flags;
int packet;
do_it_again:
BUG_ON(!tty->read_buf);
c = job_control(tty, file);
minimum = time = 0;
timeout = MAX_SCHEDULE_TIMEOUT;
/* 如果是非标准模式 */
if (!tty->icanon) {
...
}
packet = tty->packet;
add_wait_queue(&tty->read_wait, &wait);
while (nr) {
/* First test for status change. */
if (packet && tty->link->ctrl_status) {
/* 看不懂的都删掉 */
}
/* This statement must be first before checking for input
so that any interrupt will set the state back to
TASK_RUNNING. */
set_current_state(TASK_INTERRUPTIBLE);
if (((minimum - (b - buf)) < tty->minimum_to_wake) &&
((minimum - (b - buf)) >= 1))
tty->minimum_to_wake = (minimum - (b - buf));
if (!input_available_p(tty, 0)) {
/* 看不懂的都删掉 */
/* FIXME: does n_tty_set_room need locking ? */
n_tty_set_room(tty);
/* 进程调度 休眠 */
timeout = schedule_timeout(timeout);
continue;
}
__set_current_state(TASK_RUNNING);
/* Deal with packet mode. */
if (packet && b == buf) {
/* 看不懂的都删掉 */
}
/* 如果是标准模式 */
if (tty->icanon) {
/* N.B. avoid overrun if nr == 0 */
while (nr && tty->read_cnt) {
int eol;
eol = test_and_clear_bit(tty->read_tail,
tty->read_flags);
/* 从tty->read_buf 获取数据 */
c = tty->read_buf[tty->read_tail];
spin_lock_irqsave(&tty->read_lock, flags);
tty->read_tail = ((tty->read_tail+1) &
(N_TTY_BUF_SIZE-1));
tty->read_cnt--;
if (eol) {
/* this test should be redundant:
* we shouldn't be reading data if
* canon_data is 0
*/
if (--tty->canon_data < 0)
tty->canon_data = 0;
}
spin_unlock_irqrestore(&tty->read_lock, flags);
if (!eol || (c != __DISABLED_CHAR)) {
/* 将数据拷贝到用户空间 */
if (tty_put_user(tty, c, b++)) {
retval = -EFAULT;
b--;
break;
}
nr--;
}
if (eol) {
tty_audit_push(tty);
break;
}
}
if (retval)
break;
} else {
/* 非标准模式不关心删掉 */
}
....
}
mutex_unlock(&tty->atomic_read_lock);
remove_wait_queue(&tty->read_wait, &wait);
if (!waitqueue_active(&tty->read_wait))
tty->minimum_to_wake = minimum;
__set_current_state(TASK_RUNNING);
...
n_tty_set_room(tty);
return retval;
}
“读”过程干了哪些事: 1、将当前进程加入等待队列
2、设置当前进程可中断
3、进程调度,当前进程进入休眠
4、在某处被唤醒
5、从 tty->read_buf 取出数据,通过 tty_put_user 拷贝到用户空间。
那么,在何处唤醒,猜测应该是在中断处理函数中,当DATA寄存器满,触发中断,中断处理函数中调用 tty_flip_buffer_push 。
void tty_flip_buffer_push(struct tty_struct *tty)
{
unsigned long flags;
spin_lock_irqsave(&tty->buf.lock, flags);
if (tty->buf.tail != NULL)
tty->buf.tail->commit = tty->buf.tail->used;
spin_unlock_irqrestore(&tty->buf.lock, flags);
if (tty->low_latency)
flush_to_ldisc(&tty->buf.work.work);
else
schedule_delayed_work(&tty->buf.work, 1);
}
tty_flip_buffer_push 有两种方式调用到 flush_to_ldisc ,一种直接调用,另一种使用延时工作队列,在很久很久以前,我们初始化了这么一个工作队列~(tty_open 初始化 tty_struct 时前面有提到)。
在flush_to_ldisc 会调用到 disc->ops->receive_buf ,对于 N_TTY 来说是 n_tty_receive_buf ,在 n_tty_receive_buf 中,将数据拷贝到 tty->read_buf ,然后 wake_up_interruptible(&tty->read_wait) 唤醒休眠队列。
然后就是前面提到的,在n_tty_read 函数中 从 tty->read_buf 里取出数据拷贝到用户空间了。
至此,关于 uart 的框架分析基本就结束了, 对于 tty 以及线路规程是什么东西,大概了解是个什么东西。虽然大部分东西都不需要我们自己实现,但是了解它们有益无害。
下一篇文章--以 s3c2440 为例,分析底层的操作函数,以及 s3c2440 是如何初始化 uart_port 结构的,,这些是在移植驱动过程中需要做的工作~
--END--
关注公众号百问科技(ID:baiwenkeji)第一时间学习嵌入式干货。
技术交流加个人威信13266630429,验证: 博客园